Lattice points in a circle for generic unimodular shears

Type: Article

Publication Date: 2016-07-01

Citations: 1

DOI: https://doi.org/10.1142/s179304211750018x

Abstract

Given a unimodular lattice [Formula: see text] consider the counting function [Formula: see text] counting the number of lattice points of norm less than [Formula: see text], and the remainder [Formula: see text]. We give an elementary proof that the mean square of the remainder over the set of all shears of a unimodular lattice is bounded by [Formula: see text].

Locations

  • International Journal of Number Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Lattice points in a circle for generic unimodular shears 2015 Dubi Kelmer
+ Lattice points in a circle for generic unimodular shears 2015 Dubi Kelmer
+ On the mean square of the remainder for the Euclidean lattice point counting problem 2015 Dubi Kelmer
+ On the mean square of the remainder for the Euclidean lattice point counting problem 2015 Dubi Kelmer
+ Lattice Points in Circles 2000 C. D. Olds
Anneli Lax
Giuliana P. Davidoff
+ PDF Chat On the mean square of the remainder for the euclidean lattice point counting problem 2017 Dubi Kelmer
+ Counting Lattice Points 2000 C. D. Olds
Anneli Lax
Giuliana P. Davidoff
+ Lattice Points on a Circle 2007
+ Lattice Points on a Circle 2007
+ PDF Chat Lattice points in a circle: An improved mean-square asymptotics 2004 Werner Georg Nowak
+ Lattice points in a sphere 1965 M. Bleicher
M. I. Knopp
+ PDF Chat Lattice points in a sphere 1965 M. Bleicher
M. Knopp
+ PDF Chat Pick's Theorem and Sums of Lattice Points 2018 Karl Levy
Melvyn B. Nathanson
+ The number of points from a random lattice that lie inside a ball 2013 Samuel Holmin
+ Lattice counting problem 2021 Julien Trevisan
+ An $\Omega _+$ -estimate for the number of lattice points in a sphere 1985 Werner Georg Nowak
+ Optimal stretching for lattice points under convex curves 2017 Sinan Ariturk
Richard S. Laugesen
+ Counting lattice points on spheres 2000 John A. Ewell
+ Lattice points in the sphere 1999 D. R. Heath‐Brown
+ PDF Chat Lattice points on circles 2002 Javier Cilleruelo