Minimum entangling power is close to its maximum

Type: Article

Publication Date: 2019-04-04

Citations: 3

DOI: https://doi.org/10.1088/1751-8121/ab15e3

Abstract

Given a quantum gate U acting on a bipartite quantum system, its maximum (average, minimum) entangling power is the maximum (average, minimum) entanglement generation with respect to certain entanglement measures when the inputs are restricted to be product states. In this paper, we mainly focus on the 'weakest' one, i.e. the minimum entangling power, among all these entangling powers. We show that, by choosing the entropy of entanglement or Schmidt rank as entanglement measure, even the 'weakest' entangling power is generically very close to the maximum possible value of the entanglement measure. In other words, maximum, average and minimum entangling powers are generically close. We then study minimum entangling power with respect to other Lipschitiz-continuous (for the Hilbert space distance) entanglement measures and generalize our results to multipartite quantum systems.

Locations

  • arXiv (Cornell University) - View - PDF
  • Open Publications Of UTS Scholars (University of Technology Sydney) - View - PDF
  • Journal of Physics A Mathematical and Theoretical - View

Similar Works

Action Title Year Authors
+ Minimum Entangling Power is Close to Its Maximum 2012 Jianxin Chen
Zhengfeng Ji
David W. Kribs
Bei Zeng
Fang Zhang
+ PDF Chat Entangling power of spin-j systems: a geometrical approach 2024 Eduardo Serrano-Ensástiga
D. Morachis Galindo
Jesús A. Maytorena
Chryssomalis Chryssomalakos
+ PDF Chat Entangling power of multipartite unitary gates 2020 Tomasz Linowski
Grzegorz Rajchel-Mieldzioć
Karol Życzkowski
+ PDF Chat Multipartite entangling power by von Neumann entropy 2024 Xinyu Qiu
Zhiwei Song
Lin Chen
+ PDF Chat Entanglement Distribution and Entangling Power of Quantum Gates 2005 Josep Amengual i Batle
M. Casas
A. Plastino
A. Plastino
+ PDF Chat Entangling power of two-qubit unitary operations 2018 Yi Shen
Lin Chen
+ Supremum of Entanglement Measure for Symmetric Gaussian States, and Entangling Capacity 2020 Jhih-Yuan Kao
+ PDF Chat Parallel ergotropy: Maximum work extraction via parallel local unitary operations 2024 Riccardo Castellano
Ranieri Nery
Kyrylo Simonov
Donato Farina
+ PDF Chat Maximally entangled mixed states for a fixed spectrum do not always exist 2024 Julio I. de Vicente
+ Supremum of Entanglement Measure for Symmetric Gaussian States, and Entangling Capacity 2020 Kao
Jhih-Yuan
+ PDF Chat Entangling and Disentangling Power of Unitary Transformations Are Not Equal 2009 Noah Linden
John A. Smolin
Andreas Winter
+ PDF Chat Optimal entanglement generation from quantum operations 2003 Matthew Leifer
Leah Henderson
Noah Linden
+ Hierarchies among Genuine Multipartite Entangling Capabilities of Quantum Gates 2023 Samir Kumar Hazra
Aditi Sen De
+ Finding maximal quantum resources 2022 Jonathan Steinberg
Otfried Gühne
+ PDF Chat NONDISTILLABLE ENTANGLEMENT GUARANTEES DISTILLABLE ENTANGLEMENT 2012 Lin Chen
Masahito Hayashi
+ Imperfect Entangling Power of Quantum Gates 2024 Sudipta Mondal
Samir Kumar Hazra
Aditi Sen De
+ PDF Chat Optimal simulation of a perfect entangler 2010 Nengkun Yu
Runyao Duan
Mingsheng Ying
+ PDF Chat Entanglement criteria and full separability of multi-qubit quantum states 2010 Otfried Gühne
+ PDF Chat Entanglement measures and the Hilbert–Schmidt distance 2000 Masanao Ozawa
+ PDF Chat Circulating genuine multiparty entanglement in a quantum network 2022 Pritam Halder
Ratul Banerjee
Srijon Ghosh
Amit Kumar Pal
Aditi Sen