Boundedness and Decay for the Teukolsky Equation on Kerr Spacetimes I: The Case $$|a|\ll M$$

Type: Article

Publication Date: 2019-01-08

Citations: 62

DOI: https://doi.org/10.1007/s40818-018-0058-8

Abstract

We prove boundedness and polynomial decay statements for solutions of the spin ±2 Teukolsky equation on a Kerr exterior background with parameters satisfying |a|≪M . The bounds are obtained by introducing generalisations of the higher order quantities P and P_ used in our previous work on the linear stability of Schwarzschild. The existence of these quantities in the Schwarzschild case is related to the transformation theory of Chandrasekhar. In a followup paper, we shall extend this result to the general sub-extremal range of parameters |a|<M . As in the Schwarzschild case, these bounds provide the first step in proving the full linear stability of the Kerr metric to gravitational perturbations.

Locations

  • PubMed Central - View
  • Annals of PDE - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case $|a|\ll M$ 2017 Mihalis Dafermos
Gustav Holzegel
Igor Rodnianski
+ Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case $|a|\ll M$ 2017 Mihalis Dafermos
Gustav Holzegel
Igor Rodnianski
+ Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range $|a| 2020 Yakov Shlapentokh-Rothman
Rita Teixeira da Costa
+ Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range $|a|<M$: frequency space analysis 2020 Yakov Shlapentokh-Rothman
Rita Teixeira da Costa
+ Boundedness and Decay for the Teukolsky System in Kerr-Newman Spacetime I: The Case $|a|, |Q| \ll M$ 2023 Elena Giorgi
+ PDF Chat Boundedness and decay for the Teukolsky equation of spin ±1 on Reissner–Nordström spacetime: the $\boldsymbol{ \newcommand{\e}{{\rm e}} \ell=1}$ spherical mode 2019 Elena Giorgi
+ The spin $\pm$1 Teukolsky equations and the Maxwell system on Schwarzschild 2016 Federico Pasqualotto
+ The spin $\pm$1 Teukolsky equations and the Maxwell system on Schwarzschild 2016 Federico Pasqualotto
+ PDF Chat Precise asymptotics of the spin $+2$ Teukolsky field in the Kerr black hole interior 2024 Sebastian Gurriaran
+ PDF Chat Boundedness and Decay for the Teukolsky System in Kerr-Newman Spacetime II: The Case $|a| \ll M$, $|Q| <M$ in Axial Symmetry 2024 Elena Giorgi
Jingbo Wan
+ PDF Chat The black hole stability problem for linear scalar perturbations 2010 Mihalis Dafermos
Igor Rodnianski
+ PDF Chat Sharp Decay for Teukolsky Equation in Kerr Spacetimes 2023 Siyuan Ma
Lin Zhang
+ PDF Chat Decay of solutions of the Teukolsky equation for higher spin in the Schwarzschild geometry 2009 Felix Finster
Joel Smoller
+ Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: The cases |a| << M or axisymmetry 2010 Mihalis Dafermos
Igor Rodnianski
+ PDF Chat Lectures on Linear Stability of Rotating Black Holes 2019 Felix Finster
+ Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: The cases |a| &lt;&lt; M or axisymmetry 2010 Mihalis Dafermos
Igor Rodnianski
+ Linear stability of the Schwarzschild black hole under electromagnetic and gravitational perturbations 2006 Felix Finster
Joel Smoller
+ A general formalism for the stability of Kerr 2020 Elena Giorgi
Sergiù Klainerman
Jérémie Szeftel
+ PDF Chat Linear Stability of Schwarzschild-Anti-de Sitter spacetimes III: Quasimodes and sharp decay of gravitational perturbations 2024 Olivier Graf
Gustav Holzegel
+ Instability of the Kerr Cauchy horizon under linearised gravitational perturbations 2022 Jan Sbierski