Green–Tao theorem in function fields

Type: Article

Publication Date: 2011-01-01

Citations: 14

DOI: https://doi.org/10.4064/aa147-2-3

Abstract

We adapt the proof of the Green-Tao theorem on arithmetic progressions in primes to the setting of polynomials over a finite field, to show that for every $k$, the irreducible polynomials in $\mathbf{F}_q[t]$ contain configurations of the form $\{f+ Pg : \d(P)<k \}, g \neq 0$.

Locations

  • Acta Arithmetica - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Green-Tao theorem in function fields 2009 Thái Hoàng Lê
+ PDF Chat The Green-Tao theorem on primes in arithmetical progressions in the positive cone of $\mathbb Z [X]$ 2014 Victor Pambuccian
+ PDF Chat The Green-Tao theorem: an exposition 2014 David Conlon
Jacob Fox
Yufei Zhao
+ PDF Chat Small gaps between configurations of prime polynomials 2015 Hans Parshall
+ The Green–Tao theorem for primes of the form $$x^2+y^2+1$$ x 2 + y 2 + 1 2018 Yu‐Chen Sun
Hao Pan
+ Small gaps between configurations of prime polynomials 2015 Hans Parshall
+ Small gaps between configurations of prime polynomials 2015 Hans Parshall
+ The Green-Tao theorem for primes of the form $x^2+y^2+1$ 2017 Yu‐Chen Sun
Hao Pan
+ Arithmetic and polynomial progressions in the primes [after Gowers, Green, Tao and Ziegler] 2012 Julia Wolf
+ The Bombieri-Vinogradov theorem for nilsequences 2020 Xuancheng Shao
Joni Teräväinen
+ PDF Chat The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view 2005 Bryna Kra
+ Arithmetic and polynomial progressions in the primes--d'apres Gowers, Green, Tao and Ziegler 2013 Julia Wolf
+ Prime divisors in polynomial orbits over function fields 2015 Wade Hindes
+ Prime divisors in polynomial orbits over function fields 2015 Wade Hindes
+ PDF Chat SMOOTH VALUES OF POLYNOMIALS 2019 Jonathan Bober
Dan Fretwell
G Martin
Trevor D. Wooley
+ PDF Chat A polynomial Freiman-Ruzsa inverse theorem for function fields 2025 Thomas F. Bloom
+ Primes with Beatty and Chebotarev conditions 2020 Caleb Ji
Joshua Kazdan
Vaughan McDonald
+ PDF Chat Bounded gaps between primes in number fields and function fields 2015 Abel Castillo
Chris Hall
Robert J. Lemke Oliver
Paul Pollack
Lola Thompson
+ The Mertens and Pólya conjectures in function fields 2012 Peter Humphries
+ Ranges of polynomials control degree ranks of Green and Tao over finite prime fields 2023 Thomas Karam