Dual Feynman transform for modular operads

Type: Article

Publication Date: 2007-01-01

Citations: 21

DOI: https://doi.org/10.4310/cntp.2007.v1.n4.a1

Abstract

We introduce and study the notion of a dual Feynman transform of a smodular operad.This generalizes and gives a conceptual explanation of Kontsevich's dual construction producing graph cohomology classes from a contractible differential graded Frobenius algebra.The dual Feynman transform of a modular operad is indeed linear dual to the Feynman transform introduced by Getzler and Kapranov when evaluated on vacuum graphs.In marked contrast to the Feynman transform, the dual notion admits an extremely simple presentation via generators and relations; this leads to an explicit and easy description of its algebras.We discuss a further generalization of the dual Feynman transform whose algebras are not necessarily contractible.This naturally gives rise to a two-colored graph complex analogous to the Boardman-Vogt topological tree complex.

Locations

  • Communications in Number Theory and Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • City Research Online (City University London) - View - PDF

Similar Works

Action Title Year Authors
+ Dual Feynman transform for modular operads 2007 Joseph Chuang
Andrey Lazarev
+ Modular operads 1994 Ezra Getzler
Mikhail Kapranov
+ Modular operads 1994 Ezra Getzler
Mikhail Kapranov
+ PDF Chat The equivalence between Feynman transform and Verdier duality 2021 Hao Yu
+ The equivalence between Feynman transform and Verdier duality 2016 Hao Yu
+ Graph homology: Koszul and Verdier duality 2008 Andrey Lazarev
Alexander A. Voronov
+ PDF Chat Feynman diagrams and minimal models for operadic algebras 2010 Joseph Chuang
Andrey Lazarev
+ Graph homology: Koszul and Verdier duality 2007 Andrey Lazarev
Alexander A. Voronov
+ PDF Chat Duality of graded graphs through operads 2021 Samuele Giraudo
+ Feynman Categories 2013 Ralph M. Kaufmann
Benjamin C. Ward
+ Feynman Categories 2017 Ralph M. Kaufmann
Benjamin C. Ward
+ Cyclic operads and algebra of chord diagrams 2000 Vladimir Hinich
Arkady Vaintrob
+ Cyclic operads and algebra of chord diagrams 2000 Vladimir Hinich
Arkady Vaintrob
+ A pairing between graphs and trees 2005 Dev Sinha
+ PDF Chat Notes on algebraic operads, graph complexes, and Willwacher’s construction 2012 Vasily Dolgushev
Christopher L. Rogers
+ Notes on Algebraic Operads, Graph Complexes, and Willwacher's Construction 2012 Vasily Dolgushev
Christopher L. Rogers
+ Cyclic model for the dg dual of the BV operad 2023 Thomas Willwacher
+ Dual polar graphs, the quantum algebra <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>U</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="fraktur">sl</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>, and Leonard systems of dual q-Krawtchouk … 2012 Chalermpong Worawannotai
+ Graph cohomology classes in the Batalin–Vilkovisky formalism 2009 Alastair Hamilton
Andrey Lazarev
+ Feynman Transform of a Modular Operad 2020 M. Doubek
Branislav JurÄŤo
Martin Markl
Ivo Sachs