Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem

Type: Article

Publication Date: 2016-01-28

Citations: 0

DOI: https://doi.org/10.5802/jedp.633

Abstract

We discuss global well-posedness for the Kadomtsev-Petviashvili II in two and three space dimensions with small data. The crucial points are new bilinear estimates and the definition of the function spaces. As by-product we obtain that all solutions to small initial data scatter as t→±∞.

Locations

  • Journées Équations aux dérivées partielles - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ Global well-posedness and scattering for small data for the 3-d KP-II Cauchy problem 2016 Herbert Koch
Junfeng Li
+ Globak well-posedness and scattering for small data for the 3-d KP-II Cauchy problem 2016 Herbert Koch
Junfeng Li
+ Global well-posedness and scattering for small data for the three-dimensional Kadomtsev–Petviashvili II equation 2017 Herbert Koch
Junfeng Li
+ PDF Chat Well-posedness and scattering for the KP-II equation in a critical space 2008 Martin Hadac
Sebastian Herr
Herbert Koch
+ Global well-posedness for the Kadomtsev-Petviashvili II equation 2000 Hideo Takaoka
+ PDF Chat Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations 2008 Martin Hadac
+ Recent Progress on the Global Well-Posedness of the KPI Equation 2009 Carlos E. Kenig
+ Well-posedness for the fifth order KP-II initial data problem in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant="double-struck">T</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2016 Junfeng Li
Xia Li
+ Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations 2006 Martin Hadac
+ PDF Chat Global low-regularity solutions for Kadomtsev-Petviashvili equation 2000 N. Tzvetkov
+ Global well-posedness for KdV in Sobolev Spaces of negative index 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence C. Tao
+ PDF Chat Global well-posedness in the energy space for a modified KP II equation via the Miura transform 2006 Carlos E. Kenig
Yvan Martel
+ PDF Chat Well-posedness for the Kadomtsev-Petviashvili II equation 2000 Hideo Takaoka
+ Global well-posedness for KdV in Sobolev Spaces of negative index 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
T. Tao
+ Low regularity solutions for the Kadomtsev-Petviashvili I equation 2002 J. Colliander
Carlos E. Kenig
Gigliola Staffilani
+ Global well-posedness for the fifth order Kadomtsev–Petviashvili II equation in three dimensional space 2015 Junfeng Li
Kun Meng
+ Long time asymptotics of large data in the Kadomtsev-Petviashvili models 2021 Argenis J. Mendez
Claudio Muñoz
Felipe Poblete
Juan C. Pozo
+ Correction: Global well-posedness for the KP-I equation 2004 Luc Molinet
Jean‐Claude Saut
N. Tzvetkov
+ On the local well-posedness of the Kadomtsev-Petviashvili II equation 2007 Martin Hadac
+ The Cauchy Problem for the Kadomtsev-Petviashvili (KPII) Equation in Three Space Dimensions 2007 Pedro Isaza J.
Juan C. López C.
Jorge Mejía L.

Works That Cite This (0)

Action Title Year Authors