Imaginary geometry I: interacting SLEs

Type: Article

Publication Date: 2016-03-14

Citations: 231

DOI: https://doi.org/10.1007/s00440-016-0698-0

Abstract

Abstract Fix constants $$\chi &gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>χ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> and $$\theta \in [0,2\pi )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>θ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and let h be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field $$e^{i(h/\chi +\theta )}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>(</mml:mo> <mml:mi>h</mml:mi> <mml:mo>/</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:math> starting at a fixed boundary point of the domain. Letting $$\theta $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>θ</mml:mi> </mml:math> vary, one obtains a family of curves that look locally like $$\hbox {SLE}_\kappa $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext>SLE</mml:mtext> <mml:mi>κ</mml:mi> </mml:msub> </mml:math> processes with $$\kappa \in (0,4)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>κ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> (where $$\chi = \tfrac{2}{\sqrt{\kappa }} -\tfrac{ \sqrt{\kappa }}{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>χ</mml:mi> <mml:mo>=</mml:mo> <mml:mstyle> <mml:mfrac> <mml:mn>2</mml:mn> <mml:msqrt> <mml:mi>κ</mml:mi> </mml:msqrt> </mml:mfrac> </mml:mstyle> <mml:mo>-</mml:mo> <mml:mstyle> <mml:mfrac> <mml:msqrt> <mml:mi>κ</mml:mi> </mml:msqrt> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mstyle> </mml:mrow> </mml:math> ), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when h is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called counterflow lines ( $$\hbox {SLE}_{16/\kappa }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext>SLE</mml:mtext> <mml:mrow> <mml:mn>16</mml:mn> <mml:mo>/</mml:mo> <mml:mi>κ</mml:mi> </mml:mrow> </mml:msub> </mml:math> ) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about $$\hbox {SLE}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext>SLE</mml:mtext> </mml:math> . For example, we prove that $$\hbox {SLE}_\kappa (\rho )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mtext>SLE</mml:mtext> <mml:mi>κ</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general $$\hbox {SLE}_{16/\kappa }(\rho )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mtext>SLE</mml:mtext> <mml:mrow> <mml:mn>16</mml:mn> <mml:mo>/</mml:mo> <mml:mi>κ</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> processes.

Locations

  • Probability Theory and Related Fields - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Apollo (University of Cambridge) - View - PDF

Similar Works

Action Title Year Authors
+ Piecewise smooth vector fields in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math>at infinity 2015 Claudio Pessoa
Durval J. Tonon
+ PDF Chat <i>Geometry, Particles and Fields</i> 1983 Bjørn Felsager
E. Kazes
+ Free planes. I 1967 Oddvar Iden
+ Geometry I. 1988 F. A. Sherk
Marcel Berger
Mabel Cook Cole
S. Levy
+ PDF Chat <i>Geometry, Particles and Fields</i> 1984 Bjørn Felsager
Barry R. Holstein
+ Geometry and dynamics I: billiards 2010 Marcel Berger
+ GEOMETRY AND PHYSICS: XVI International Fall Workshop 2008 Rui Loja Fernandes
Roger Picken
+ Unbounded Vector Fields 2012
+ Curved Space 2018 John Stillwell
+ Curved space 2010
+ Curved Space 2013
+ CFTs of SLEs: the radial case 2004 Michel Bauer
Denis Bernard
+ CFTs of SLEs: the radial case 2004 Michel Bauer
Denis Bernard
+ CFTs of SLEs: the radial case 2004 Michel Bauer
Denis Bernard
+ Spherical Geometry I 2024 Hiroshi Maehara
Horst Martini
+ Geometry I 1987
+ Geometry I 1991 D. V. Alekseevskij
V. V. Lychagin
A. M. Vinogradov
+ Probing space-time geometry using young diagrams 2018 Lwazi Nkumane
+ Riemann-Silberstein Vectors: Streamlined Electromagnetics with Applications 2024 R. Kästner
+ Fields and geometry, 1986 : proceedings of the XXIInd Winter School and Workshop of Theoretical Physics, Karpacz, Poland, 17 February-1 March 1986 1986 Arkadiusz Jadczyk