Stochastic Frank-Wolfe methods for nonconvex optimization

Type: Article

Publication Date: 2016-09-01

Citations: 129

DOI: https://doi.org/10.1109/allerton.2016.7852377

Download PDF

Abstract

We study Frank-Wolfe methods for nonconvex stochastic and finite-sum optimization problems. Frank-Wolfe methods (in the convex case) have gained tremendous recent interest in machine learning and optimization due to their projection-free property and their ability to exploit structured constraints. However, our understanding of these algorithms in the nonconvex setting is fairly limited. In this paper, we propose nonconvex stochastic Frank-Wolfe methods and analyze their convergence properties. Furthermore, for objective functions that decompose into a finite-sum, we leverage ideas from variance reduction for convex optimization to obtain new variance reduced nonconvex Frank-Wolfe methods that have provably faster convergence than the classical Frank-Wolfe method.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Stochastic Frank-Wolfe Methods for Nonconvex Optimization 2016 Sashank J. Reddi
Suvrit Sra
Barnabás Póczos
Alex Smola
+ Stochastic Frank-Wolfe Methods for Nonconvex Optimization 2016 J Reddi Sashank
Sra Suvrit
Barnabás Póczos
Smola Alex
+ Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features 2023 Aleksandr Beznosikov
David Dobre
Gauthier Gidel
+ Stochastic Variance Reduction for Nonconvex Optimization 2016 Sashank J. Reddi
Ahmed Hefny
Suvrit Sra
Barnabás Póczos
Alex Smola
+ Stochastic Variance Reduction for Nonconvex Optimization 2016 Sashank J. Reddi
Ahmed Hefny
Suvrit Sra
Barnabás Póczos
Alex Smola
+ PDF Chat Stochastic Frank-Wolfe: Unified Analysis and Zoo of Special Cases 2024 Ruslan Nazykov
А. Л. Шестаков
Vladimir Solodkin
Aleksandr Beznosikov
Gauthier Gidel
Alexander Gasnikov
+ Variance-Reduced and Projection-Free Stochastic Optimization 2016 Elad Hazan
Haipeng Luo
+ Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization 2020 Geoffrey Négiar
Gideon Dresdner
Alicia Y. Tsai
Laurent El Ghaoui
Francesco Locatello
Robert M. Freund
Fabián Pedregosa
+ Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization 2020 Geoffrey Négiar
Gideon Dresdner
Alicia Y. Tsai
Laurent El Ghaoui
Francesco Locatello
Robert M. Freund
Fabián Pedregosa
+ Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization 2020 Geoffrey Négiar
Gideon Dresdner
Alicia Y. Tsai
Laurent El Ghaoui
Francesco Locatello
Fabián Pedregosa
+ Asynchronous Stochastic Frank-Wolfe Algorithms for Non-Convex Optimization 2019 Bin Gu
Wenhan Xian
Heng Huang
+ Stochastic Frank-Wolfe for Composite Convex Minimization 2019 Francesco Locatello
Alp Yurtsever
Olivier Fercoq
Volkan Cevher
+ Stochastic Frank-Wolfe for Composite Convex Minimization 2019 Francesco Locatello
Alp Yurtsever
Olivier Fercoq
Volkan Cevher
+ Stochastic Nested Variance Reduction for Nonconvex Optimization 2018 Dongruo Zhou
Pan Xu
Quanquan Gu
+ PDF Chat Generalized stochastic Frank–Wolfe algorithm with stochastic “substitute” gradient for structured convex optimization 2020 Haihao Lu
Robert M. Freund
+ Generalized Stochastic Frank-Wolfe Algorithm with Stochastic "Substitute" Gradient for Structured Convex Optimization 2018 Haihao Lu
Robert M. Freund
+ Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization 2016 Sashank J. Reddi
Suvrit Sra
Barnabás Póczos
Alexander J. Smola
+ Fast Stochastic Methods for Nonsmooth Nonconvex Optimization 2016 Sashank J. Reddi
Suvrit Sra
Barnabás Póczos
Alexander J. Smola
+ PDF Chat An accelerated stochastic ADMM for nonconvex and nonsmooth finite-sum optimization 2024 Yuxuan Zeng
Zhiguo Wang
Jianchao Bai
Xiaojing Shen
+ Non-convex Finite-Sum Optimization Via SCSG Methods 2017 Lihua Lei
Cheng Ju
Jianbo Chen
Michael I. Jordan