An Upper Bound for the Volumes of Complements of Periodic Geodesics

Type: Article

Publication Date: 2017-09-10

Citations: 12

DOI: https://doi.org/10.1093/imrn/rnx231

Abstract

Abstract A periodic geodesic on a surface has a natural lift to the unit tangent bundle; when the complement of this lift is hyperbolic, its volume typically grows as the geodesic gets longer. We give an upper bound for this volume which is linear in the geometric length of the geodesic.

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ An upper bound for the volumes of complements of periodic geodesics 2014 Maxime Bergeron
Tali Pinsky
Lior Silberman
+ An upper bound for the volumes of complements of periodic geodesics 2014 Maxime Bergeron
Tali Pinsky
Lior Silberman
+ PDF Chat A lower bound for the volumes of complements of periodic geodesics 2020 José Andrés Rodríguez‐Migueles
+ On volumes of complements of periodic geodesics 2018 José Andrés Rodríguez Migueles
+ PDF Chat A lower bound for the volumes of modular link complements 2024 Connie On Yu Hui
Dionne Ibarra
José Andrés Rodríguez Migueles
+ Periods of continued fractions and volumes of modular knots complements 2023 José Andrés Rodríguez‐Migueles
+ Periods of continued fractions and volumes of modular knots complements 2020 José Andrés Rodríguez Migueles
+ Volume bounds for the canonical lift complement of a random geodesic 2021 Tommaso Cremaschi
Yannick Krifka
Dídac Martínez-Granado
Franco Vargas Pallete
+ The Necker cube surface 2023 W. Patrick Hooper
Pavel Javornik
+ Volume bounds for the canonical lift complement of a random geodesic 2021 Tommaso Cremaschi
Yannick Krifka
Dídac Martínez-Granado
Franco Vargas Pallete
+ PDF Chat Volume bound for the canonical lift complement of a random geodesic 2023 Tommaso Cremaschi
Yannick Krifka
Dídac Martínez-Granado
Franco Vargas Pallete
+ Periods of continuous fractions and volumes of modular knots complements 2020 José Andrés Rodríguez Migueles
+ PDF Chat Volume bounds for hyperbolic rod complements in the 3-torus 2024 Norman Do
Connie On Yu Hui
Jessica S. Purcell
+ PDF Chat Geometric filling curves on surfaces 2017 Ara Basmajian
Hugo Parlier
Juan Souto
+ PDF Chat ON THE NUMBER OF PERIODIC GEODESICS INRANK 1 SURFACES 2016 Abdelhamid Amroun
+ On volumes of complex hyperbolic orbifolds 2012 Ilesanmi Adeboye
Guofang Wei
+ On volumes of complex hyperbolic orbifolds 2014 Ilesanmi Adeboye
Guofang Wei
+ PDF Chat None 2023 Tommaso Cremaschi
Yannick Krifka
Dídac Martínez-Granado
Franco Vargas Pallete
+ Positive Ricci Curvature and the Length of a Shortest Periodic Geodesic 2024 Regina Rotman
+ PDF Chat Euclidean Volume Growth for Complete Riemannian Manifolds 2020 Gilles Carron