Discrete artificial boundary conditions for the linearized Korteweg-de Vries equation

Type: Article

Publication Date: 2016-03-22

Citations: 19

DOI: https://doi.org/10.1002/num.22058

Abstract

We consider the derivation of continuous and fully discrete artificial boundary conditions for the linearized Korteweg–de Vries equation. We show that we can obtain them for any constant velocities and any dispersion. The discrete artificial boundary conditions are provided for two different numerical schemes. In both continuous and discrete case, the boundary conditions are nonlocal with respect to time variable. We propose fast evaluations of discrete convolutions. We present various numerical tests which show the effectiveness of the artificial boundary conditions.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1455–1484, 2016

Locations

  • Numerical Methods for Partial Differential Equations - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Non-standard boundary conditions for the linearized Korteweg-de Vries equation 2021 Mostafa Abounouh
Hassan Al-Moatassime
Sabah Kaouri
+ Discrete Artificial Boundary Conditions for the Korteweg-de Vries Equation 2015 Christophe Besse
Matthias Ehrhardt
Ingrid Lacroix–Violet
+ Discrete Artificial Boundary Conditions for the Korteweg-de Vries Equation 2015 Christophe Besse
Matthias Ehrhardt
Ingrid Lacroix–Violet
+ The discrete modified Korteweg–de Vries equation under nonzero boundary conditions 2022 Guixian Wang
Bo Han
+ Fully discrete low-regularity integrator for the Korteweg–de Vries equation 2023 Yongsheng Li
Fangyan Yao
+ Numerical dynamics for discrete nonlinear damping Korteweg–de Vries equations 2024 Liu Guifen
Yangrong Li
Fengling Wang
+ Numerical simulation of the linearised Korteweg-de Vries equation : Diploma work (15 HP) Uppsala University Division of scientific computing 2014 Ertin Bahceci
+ PDF Chat Convergence of a fully discrete finite difference scheme for the Korteweg–de Vries equation 2014 Helge Holden
Ujjwal Koley
Nils Henrik Risebro
+ PDF Chat Discrete transparent boundary conditions for the linearized Green-Naghdi system of equations 2017 Maria Kazakova
Pascal Noble
+ Discrete Transparent Boundary Conditions for Systems of Evolution Equations 2004 Andrea Zisowsky
+ Numerical simulation of the modified Korteweg-de Vries equation 2011 Anjan Biswas
K. R. Raslan
+ Convergence of a full discrete finite element method for the Korteweg–de Vries equation 2020 Pengzhan Huang
+ Numerical method satisfying the first two conservation laws for the Korteweg–de Vries equation 2007 Cui Yanfen
De-kang Mao
+ Discrete periodic problem for the modified nonlinear Korteweg-de Vries equation 1982 N. N. Bogolyubov
A. K. Prikarpatskii
В. Г. Самойленко
+ Discrete periodic problem for the modified nonlinear Korteweg-de Vries equation 1981 N. N. Bogolyubov
A. K. Prikarpatskii
В. Г. Самойленко
+ Numerical solution of nonlinear boundary value problems for ordinary differential equations in the continuous framework 2013 Lloyd N. Trefethen
+ Investigation of finite difference schemes for the Korteweg-De Vries equation 1992 N. D. Turetayev
+ Numerical Computations of Generalized Korteweg-de Vries (KdV) equations 2018 Andrew Madsen
S. A. Sims
+ The Discrete Korteweg—de Vries Equation 1995 Frank Nijhoff
H.W. Capel
+ Discrete models leading to a weakly dissipative korteweg-de vries equation 1971 Alan Jeffrey

Works That Cite This (13)

Action Title Year Authors
+ Numerical solution to a linearized time fractional KdV equation on unbounded domains 2016 Qian Zhang
Jiwei Zhang
Shidong Jiang
Zhimin Zhang
+ PDF Chat A pseudo-spectral splitting method for linear dispersive problems with transparent boundary conditions 2020 Lukas Einkemmer
Alexander Ostermann
Mirko Residori
+ Perfectly Matched Layers Methods for Mixed Hyperbolic–Dispersive Equations 2022 Christophe Besse
Sergey Gavrilyuk
Maria Kazakova
Pascal Noble
+ PDF Chat Artificial boundary conditions for the linearized Benjamin–Bona–Mahony equation 2018 Christophe Besse
Benoît Mésognon-Gireau
Pascal Noble
+ PDF Chat Discrete transparent boundary conditions for the mixed KDV–BBM equation 2017 Christophe Besse
Pascal Noble
David Sánchez
+ PDF Chat Hyperbolic approximation of the BBM equation 2022 Sergey Gavrilyuk
Keh‐Ming Shyue
+ PDF Chat Transparent boundary conditions for wave propagation in fractal trees: convolution quadrature approach 2020 Patrick Joly
Maryna Kachanovska
+ PDF Chat An explicit spectral collocation method for the linearized Korteweg–de Vries equation on unbounded domain 2017 Jinwei Fang
Boying Wu
Wenjie Liu
+ PDF Chat Nonlinear Evolution Equations: Analysis and Numerics 2020 Marlis Hochbruck
Herbert Koch
Sung‐Jin Oh
Alexander Ostermann
+ PDF Chat A pseudo-spectral Strang splitting method for linear dispersive problems with transparent boundary conditions 2021 Lukas Einkemmer
Alexander Ostermann
Mirko Residori