Type: Article
Publication Date: 2016-03-22
Citations: 19
DOI: https://doi.org/10.1002/num.22058
We consider the derivation of continuous and fully discrete artificial boundary conditions for the linearized Korteweg–de Vries equation. We show that we can obtain them for any constant velocities and any dispersion. The discrete artificial boundary conditions are provided for two different numerical schemes. In both continuous and discrete case, the boundary conditions are nonlocal with respect to time variable. We propose fast evaluations of discrete convolutions. We present various numerical tests which show the effectiveness of the artificial boundary conditions.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1455–1484, 2016