Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces

Type: Article

Publication Date: 2016-04-12

Citations: 41

DOI: https://doi.org/10.1090/memo/1149

Abstract

This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given L space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, we prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric coefficients. 2010 Mathematics Subject Classification. Primary 35J25, Secondary 31B20, 35C15, 46E35.

Locations

  • Memoirs of the American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces 2013 Ariel Barton
Svitlana Mayboroda
+ Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces 2013 Ariel Barton
Svitlana Mayboroda
+ PDF Chat A note on Besov regularity of layer potentials and solutions of elliptic PDE’s 2002 Marius Mitrea
+ Perturbation of well-posedness and layer potentials for higher-order elliptic systems with rough coefficients 2016 Ariel Barton
+ Perturbation of well-posedness and layer potentials for higher-order elliptic systems with rough coefficients 2016 Ariel Barton
+ PDF Chat Boundary integral operators and boundary value problems for Laplace’s equation 2010 Tongkeun Chang
John L. Lewis
+ Extrapolation of well posedness for higher order elliptic systems with rough coefficients 2017 Ariel Barton
+ Extrapolation of well posedness for higher order elliptic systems with rough coefficients 2017 Ariel Barton
+ PDF Chat Layer potentials and boundary value problems for Laplacian in Lipschitz domains with data in quasi-Banach Besov spaces 2005 Svetlana Mayboroda
Marius Mitrea
+ Higher-Order Elliptic Equations in Non-Smooth Domains: a Partial Survey 2016 Ariel Barton
Svitlana Mayboroda
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains 2013 Irina Mitrea
Marius Mitrea
+ PDF Chat Boundary value problems and Hardy spaces for elliptic systems with block structure 2020 Pascal Auscher
Moritz Egert
+ Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition 2013 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ Elliptic Boundary Value Problems With Fractional Regularity Data: The First Order Approach 2018 Alex Amenta
Pascal Auscher
+ Elliptic Boundary Value Problems with Fractional Regularity Data: The First Order Approach 2016 Alex Amenta
Pascal Auscher
+ Boundary Layers on Sobolev–Besov Spaces and Poisson's Equation for the Laplacian in Lipschitz Domains 1998 Eugene B. Fabes
Osvaldo MĂ©ndez
Marius Mitrea
+ Layer Potential Operators Acting from Boundary Besov and Triebel-Lizorkin Spaces 2023 Dorina Mitrea
Irina Mitrea
Marius Mitrea
+ PDF Chat Hörmander Spaces, Interpolation, and Elliptic Problems 2014 Vladimir Mikhailets
Aleksandr Murach
+ PDF Chat Elliptic and parabolic regularity for second‐ order divergence operators with mixed boundary conditions 2015 Robert Haller‐Dintelmann
Alf Jonsson
Dorothee Knees
Joachim Rehberg

Works That Cite This (40)

Action Title Year Authors
+ PDF Chat Square function estimates on layer potentials for higher‐order elliptic equations 2017 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ PDF Chat Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure 2023 Pascal Auscher
Moritz Egert
+ PDF Chat Bounds on layer potentials with rough inputs for higher order elliptic equations 2019 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ PDF Chat The method of layer potentials in<i>L<sup>p</sup></i>and endpoint spaces for elliptic operators with<i>L<sup>∞</sup></i>coefficients 2015 Steve Hofmann
Marius Mitrea
Andrew J. Morris
+ Dirichlet problem in domains with lower dimensional boundaries 2018 Joseph Feneuil
Svitlana Mayboroda
Zihui Zhao
+ PDF Chat Representation and uniqueness for boundary value elliptic problems via first order systems 2019 Pascal Auscher
Mihalis Mourgoglou
+ Weighted gradient estimates for elliptic problems with Neumann boundary conditions in Lipschitz and (semi-)convex domains 2019 Sibei Yang
Der‐Chen Chang
Dachun Yang
Wen Yuan
+ The L Robin problem for Laplace equations in Lipschitz and (semi-)convex domains 2017 Sibei Yang
Dachun Yang
Wen Yuan
+ PDF Chat Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO anti-symmetric part in NTA domains 2022 Sibei Yang
Dachun Yang
Wenxian Ma
+ Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations 2018 Ariel Barton
Steve Hofmann
Svitlana Mayboroda