Universality of local eigenvalue statistics in random matrices with external source

Type: Article

Publication Date: 2014-03-11

Citations: 19

DOI: https://doi.org/10.1142/s2010326314500051

Abstract

Consider a random matrix of the form [Formula: see text], where M n is a Wigner matrix and D n is a real deterministic diagonal matrix (D n is commonly referred to as an external source in the mathematical physics literature). We study the universality of the local eigenvalue statistics of W n for a general class of Wigner matrices M n and diagonal matrices D n . Unlike the setting of many recent results concerning universality, the global semicircle law fails for this model. However, we can still obtain the universal sine kernel formula for the correlation functions. This demonstrates the remarkable phenomenon that local laws are more resilient than global ones. The universality of the correlation functions follows from a four moment theorem, which we prove using a variant of the approach used earlier by Tao and Vu.

Locations

  • Random Matrices Theory and Application - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Universality of local eigenvalue statistics in random matrices with external source 2013 Sean O’Rourke
Van Vu
+ Universality of local eigenvalue statistics in random matrices with external source 2013 Sean O’Rourke
Van Vu
+ Local law for eigenvalues of random Hermitian matrices with external source 2013 Linh V. Tran
+ Local law for eigenvalues of random Hermitian matrices with external source 2013 Linh M. Tran
+ PDF Chat Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation 2010 László Erdős
José A. Ramı́rez
Benjamin Schlein
Horng‐Tzer Yau
+ Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation 2009 László Erdős
José A. Ramı́rez
Benjamin Schlein
Horng‐Tzer Yau
+ Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation 2009 László Erdős
José A. Ramirez
Benjamin Schlein
Horng‐Tzer Yau
+ PDF Chat Random matrices: Universality of local eigenvalue statistics 2011 Terence Tao
Van Vu
+ Random matrices: Universality of local eigenvalue statistics 2009 Terence Tao
Van Vu
+ Random covariance matrices: Universality of local statistics of eigenvalues 2012 Terence Tao
Van Vu
+ Lectures on the local semicircle law for Wigner matrices 2016 Florent Benaych-Georges
Antti Knowles
+ Random matrices: Universality of local spectral statistics of non-Hermitian matrices 2015 Terence Tao
Van Vu
+ Local laws of random matrices and their applications 2019 Fan Yang
+ Local spectral universality for random matrices with independent entries 2015 Torben Krüger
+ Local semicircle law under moment conditions. Part II: Localization and delocalization 2015 Friedrich Götze
Alexey Naumov
А. Н. Тихомиров
+ Universality of local spectral statistics of random matrices 2011 László Erdős
Horng‐Tzer Yau
+ Universality of local spectral statistics of random matrices 2011 László Erdős
Horng‐Tzer Yau
+ PDF Chat Local Semicircle Law Under Fourth Moment Condition 2019 Friedrich Götze
Alexey Naumov
А. Н. Тихомиров
+ Bulk Universality for Complex non-Hermitian Matrices with Independent and Identically Distributed Entries 2023 Anna Maltsev
Mohammed Osman
+ PDF Chat Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge 2010 Terence Tao
Van Vu