A generalized dual maximizer for the Monge–Kantorovich transport problem

Type: Article

Publication Date: 2011-11-25

Citations: 1

DOI: https://doi.org/10.1051/ps/2011163

Abstract

The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Springer Link (Chiba Institute of Technology) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • ESAIM Probability and Statistics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A generalized dual maximizer for the Monge--Kantorovich transport problem 2012 Mathias Beiglböck
Christian Léonard
Walter Schachermayer
+ A generalized dual maximizer for the Monge--Kantorovich transport problem 2010 Mathias Beiglböck
Christian Léonard
Walter Schachermayer
+ PDF Chat A general duality theorem for the Monge–Kantorovich transport problem 2012 Mathias Beiglböck
Christian Léonard
Walter Schachermayer
+ A General Duality Theorem for the Monge--Kantorovich Transport Problem 2009 Mathias Beiglboeck
Christian Léonard
Walter Schachermayer
+ A General Duality Theorem for the Monge--Kantorovich Transport Problem 2009 Mathias Beiglboeck
Christian Léonard
Walter Schachermayer
+ PDF Chat A general duality theorem for the Monge-Kantorovich transport problem 2012 Mathias Beiglböck
Christian Léonard
Walter Schachermayer
+ PDF Chat Duality for Borel measurable cost functions 2011 Mathias Beiglböck
Walter Schachermayer
+ Duality for Borel measurable cost functions 2008 Mathias Beiglböck
Walter Schachermayer
+ On the duality theory for the Monge–Kantorovich transport problem 2014 Mathias Beiglböck
Christian Léonard
Walter Schachermayer
+ Equivalence with an Optimal Transport Problem in Two Dimensions 2024 Wojciech Górny
José M. Mazón
+ Entropic regularization of continuous optimal transport problems 2020 Christian Clason
Dirk A. Lorenz
Hinrich Mahler
Benedikt Wirth
+ Primal and dual problems 2015 Filippo Santambrogio
+ PDF Chat Introduction to Optimal Transport Theory 2009 Filippo Santambrogio
+ PDF Chat Introduction to Optimal Transport Theory 2009 Filippo Santambrogio
+ A saddle-point approach to the Monge-Kantorovich optimal transport problem 2013 Christian Léonard
+ Optimal Transport 2008 Cédric Villani
+ Optimal Transport and Minimizing Measures: Monge-Kantorovich, Mather and Geometric Measure Theory 2010 Luca Granieri
+ Optimal transport and Choquet theory 2020 Krzysztof J. Ciosmak
+ PDF Chat A saddle-point approach to the Monge-Kantorovich optimal transport problem 2010 Christian Léonard
+ A characterization for solutions of the Monge-Kantorovich mass transport problem 2014 Abbas Moameni

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Constrained Optimal Transport 2017 Ibrahim Ekren
H. Meté Soner