Equidistribution of the conormal cycle of random nodal sets

Type: Article

Publication Date: 2018-09-18

Citations: 5

DOI: https://doi.org/10.4171/jems/828

Abstract

We study the asymptotic properties of the conormal cycle of nodal sets associated to a random superposition of eigenfunctions of the Laplacian on a smooth compact Riemannian manifold without boundary. In the case where the dimension is odd, we show that the expectation of the corresponding current of integration equidistributes on the fibres of the cotangent bundle. In the case where the dimension is even, we obtain an upper bound of lower order on the expectation. Using recent results of Alesker, we also deduce some properties on the asymptotic expectation of any smooth valuation including the Euler characteristic of random nodal sets.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Journal of the European Mathematical Society - View

Similar Works

Action Title Year Authors
+ Equidistribution of the conormal cycle of random nodal sets 2015 Nguyen Viet Dang
Gabriel Rivière
+ Equidistribution of the conormal cycle of random nodal sets 2015 Nguyen Viet Dang
Gabriel Rivière
+ PDF Chat Universal Components of Random Nodal Sets 2016 Damien Gayet
Jean-Yves Welschinger
+ Betti numbers of random nodal sets of elliptic pseudo-differential operators 2014 Damien Gayet
Jean-Yves Welschinger
+ Betti numbers of random nodal sets of elliptic pseudo-differential operators 2014 Damien Gayet
Jean-Yves Welschinger
+ PDF Chat Contributions to the study of random submanifolds 2016 Thomas Letendre
+ Fluctuations of nodal sets on the 3-torus and general cancellation phenomena 2020 Massimo Notarnicola
+ PDF Chat A stochastic Gauss–Bonnet–Chern formula 2015 Liviu I. Nicolaescu
+ PDF Chat Equidistribution of Zeros of Holomorphic Sections in the Non-compact Setting 2012 Tien‐Cuong Dinh
George Marinescu
Viktoria Schmidt
+ PDF Chat Betti numbers of random nodal sets of elliptic pseudo-differential operators 2017 Damien Gayet
Jean-Yves Welschinger
+ Almost sure asymptotics for Riemannian random waves 2020 Louis Gass
+ Expectation of a random submanifold: the zonoid section 2022 Léo Mathis
Michele Stecconi
+ PDF Chat Almost-sure asymptotics for Riemannian random waves 2022 Louis Gass
+ A stochastic Gauss-Bonnet-Chern formula 2014 Liviu I. Nicolaescu
+ A stochastic Gauss-Bonnet-Chern formula 2014 Liviu I. Nicolaescu
+ Fluctuations of nodal sets on the 3-torus and general cancellation phenomena 2020 Massimo Notarnicola
+ Nodal intersections for random waves on the 3-dimensional torus 2015 Zeév Rudnick
Igor Wigman
Nadav Yesha
+ Nodal intersections for random waves on the 3-dimensional torus 2015 Zeév Rudnick
Igor Wigman
Nadav Yesha
+ PDF Chat Nodal intersections for random waves on the 3-dimensional torus 2016 Zeév Rudnick
Igor Wigman
Nadav Yesha
+ Asymptotic expansion of the variance of random zeros on complex manifolds 2020 Bernard Shiffman