A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES

Type: Article

Publication Date: 2016-01-01

Citations: 4

DOI: https://doi.org/10.1017/fms.2016.21

Abstract

We prove the boundedness of a smooth bilinear Rubio de Francia operator associated with an arbitrary collection of squares (with sides parallel to the axes) in the frequency plane\[\left(f, g \right)\mapsto \left( \sum\_{\omega \in \Omega}\left| \int\_{\mathbb{R}^2} \hat{f}(\xi) \hat{g}(\eta) \Phi\_{\omega}(\xi, \eta) e^{2 \pi i x\left(\xi+\eta \right)} d \xi d \eta\right|^r \right)^{1/r},\] provided $r\textgreater{}2$. More exactly, we show that the above operator maps $L^p \times L^q \to L^s$ whenever $p, q, s'$ are in the "local $L^{r'}$" range, i.e. $\displaystyle \frac{1}{p}+\frac{1}{q}+\frac{1}{s'}=1$, $\displaystyle0 \leq \frac{1}{p}, \frac{1}{q} \textless{}\frac{1}{r'}$, and $\displaystyle\frac{1}{s'}\textless{}\frac{1}{r'}$. Note that we allow for negative values of $s'$, which correspond to quasi-Banach spaces $L^s$.

Locations

  • Forum of Mathematics Sigma - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A Bilinear Rubio de Francia Inequality for Arbitrary Rectangles 2019 Frédéric Bernicot
Marco Vitturi
+ Bilinear Rubio de Francia inequalities for collections of non-smooth squares 2017 Frédéric Bernicot
Marco Vitturi
+ PDF Chat Bilinear Rubio de Francia inequalities for collections of non-smooth squares 2019 Frédéric Bernicot
Marco Vitturi
+ PDF Chat Quantitative Weighted Estimates for Rubio de Francia’s Littlewood–Paley Square Function 2019 Rahul Garg
Luz Roncal
Saurabh Shrivastava
+ A Remark on Bilinear Square Functions 2016 Loukas Grafakos
+ Quantitative weighted estimates for Rubio de Francia's Littlewood--Paley square function 2018 Rahul Garg
Luz Roncal
Saurabh Shrivastava
+ A Seeger-Sogge-Stein theorem for bilinear Fourier integral operators 2014 Salvador RodrĂ­guez-LĂłpez
David Rule
Wolfgang Staubach
+ A Seeger-Sogge-Stein theorem for bilinear Fourier integral operators 2014 Salvador RodrĂ­guez-LĂłpez
David Rule
Wolfgang Staubach
+ PDF Chat Unimodular bilinear Fourier multipliers on $$L^p$$ spaces 2020 K. Jotsaroop
Saurabh Shrivastava
+ Unimodular bilinear Fourier multipliers on $L^p$ spaces 2020 K. Jotsaroop
Saurabh Shrivastava
+ On the boundedness of certain bilinear Fourier integral operators 2011 Salvador RodrĂ­guez-LĂłpez
David Rule
Wolfgang Staubach
+ A Seeger–Sogge–Stein theorem for bilinear Fourier integral operators 2014 Salvador Rodríguez-López
David Rule
Wolfgang Staubach
+ Lp estimates for non smooth bilinear Littlewood-Paley square functions on R 2008 Frédéric Bernicot
+ PDF Chat Linear and bilinear 𝑇(𝑏) theorems Ă  la Stein 2015 ÁrpĂĄd BĂ©nyi
Tadahiro Oh
+ Sharp boundedness of linear and bilinear multiplier operators 2018 ì •ì€íŹ
+ Pointwise localization and sharp weighted bounds for Rubio de Francia square functions 2023 Francesco Di Plinio
Mikel FlĂłrez-Amatriain
Ioannis Parissis
Luz Roncal
+ PDF Chat Bilinear Fourier Restriction Theorems 2012 Ciprian Demeter
S. Zubin Gautam
+ PDF Chat Boundedness criteria for bilinear Fourier multipliers via shifted square function estimates 2024 Georgios Dosidis
Bae Jun Park
Lenka SlavĂ­kovĂĄ
+ Estimates for a certain bilinear Fourier integral operator 2023 Tomoya Kato
Akihiko Miyachi
Naohito Tomita
+ PDF Chat On a Class of Bilinear Pseudodifferential Operators 2013 Árpåd Bényi
Tadahiro Oh