A kicking basis for the two column Garsia-Haiman modules

Type: Article

Publication Date: 2009-01-01

Citations: 4

DOI: https://doi.org/10.46298/dmtcs.2732

Abstract

In the early 1990s, Garsia and Haiman conjectured that the dimension of the Garsia-Haiman module $R_{\mu}$ is $n!$, and they showed that the resolution of this conjecture implies the Macdonald Positivity Conjecture. Haiman proved these conjectures in 2001 using algebraic geometry, but the question remains to find an explicit basis for $R_{\mu}$ which would give a simple proof of the dimension. Using the theory of Orbit Harmonics developed by Garsia and Haiman, we present a "kicking basis" for $R_{\mu}$ when $\mu$ has two columns.

Locations

  • Discrete Mathematics & Theoretical Computer Science - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ A kicking basis for the two-column Garsia-Haiman modules 2009 Sami Assaf
Adriano M. Garsia
+ PDF Chat Macdonald polynomials and cyclic sieving 2021 Jaeseong Oh
+ Macdonald polynomial and cyclic sieving 2021 Jaeseong Oh
+ Macdonald polynomials and cyclic sieving 2021 Jaeseong Oh
+ An update on Haiman's conjectures 2022 Alex Abreu
Antonio Nigro
+ PDF Chat Macdonald–Koornwinder Polynomials 2020 Jasper V. Stokman
+ An update on Haiman’s conjectures 2024 Alex Abreu
Antonio Nigro
+ Bitableau bases for Garsia–Haiman modules of hollow type 2008 Edward E. Allen
Miranda C. Marion
Gregory S. Warrington
+ A monomiality principle approach to the Gould-Hopper Polynomials 2001 Silvia Noschese
+ Cyclotomic quiver Hecke algebras of type A 2013 Andrew Mathas
+ PDF Chat Descent Monomials, P-Partitions and Dense Garsia-Haiman Modules 2004 Edward E. Allen
+ Gröbner bases and the Nagata automorphism 1999 Vesselin Drensky
Jaime Gutiérrez
Jie-Tai Yu
+ Études des masures et de leurs applications en arithmétique 2018 Auguste Hébert
+ A basis for the Y1 subspace of diagonal harmonic polynomials 1998 Joseph E. Alfano
+ PDF Chat A Proof of the $$\frac{n!}{2}$$ Conjecture for Hook Shapes 2022 Sam Armon
+ $(GL_k\times S_n)$-Modules of Multivariate Diagonal Harmonics 2020 François Bergeron
+ $(GL_k\times S_n)$-Modules of Multivariate Diagonal Harmonics 2020 François Bergeron
+ Bitableaux bases for Garsia-Haiman modules of hollow type 2006 Edward E. Allen
Miranda E. Cox
Gregory S. Warrington
+ Wreath Macdonald polynomials, a survey 2023 Daniel L. Orr
Mark Shimozono
+ A Linear Basis of the Free Akivis Algebra 2019 I. A. Groo