POSITIVE PROPORTION OF SHORT INTERVALS CONTAINING A PRESCRIBED NUMBER OF PRIMES

Type: Article

Publication Date: 2019-05-17

Citations: 1

DOI: https://doi.org/10.1017/s0004972719000467

Abstract

We prove that for every $m\geq 0$ there exists an $\unicode[STIX]{x1D700}=\unicode[STIX]{x1D700}(m)>0$ such that if $0<\unicode[STIX]{x1D706}<\unicode[STIX]{x1D700}$ and $x$ is sufficiently large in terms of $m$ and $\unicode[STIX]{x1D706}$ , then $$\begin{eqnarray}|\{n\leq x:|[n,n+\unicode[STIX]{x1D706}\log n]\cap \mathbb{P}|=m\}|\gg _{m,\unicode[STIX]{x1D706}}x.\end{eqnarray}$$ The value of $\unicode[STIX]{x1D700}(m)$ and the dependence of the implicit constant on $\unicode[STIX]{x1D706}$ and $m$ may be made explicit. This is an improvement of the author’s previous result. Moreover, we will show that a careful investigation of the proof, apart from some slight changes, can lead to analogous estimates when allowing the parameters $m$ and $\unicode[STIX]{x1D706}$ to vary as functions of $x$ or replacing the set $\mathbb{P}$ of all primes by primes belonging to certain specific subsets.

Locations

  • Bulletin of the Australian Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Positive proportion of short intervals containing a prescribed number of primes 2018 Daniele Mastrostefano
+ Positive proportion of short intervals containing a prescribed number of primes 2018 Daniele Mastrostefano
+ Short intervals with a given number of primes 2015 Tristan Freiberg
+ Short intervals with a given number of primes 2015 Tristan Freiberg
+ Short intervals containing a prescribed number of primes 2018 Daniele Mastrostefano
+ Short intervals containing a prescribed number of primes 2018 Daniele Mastrostefano
+ Short intervals with a given number of primes 2016 Tristan Freiberg
+ Short intervals containing a prescribed number of primes 2018 Daniele Mastrostefano
+ PDF Chat The number of primes in a short interval. 1993 Shituo Lou
Yao Qi
+ PDF Chat The number of primes in a short interval. 1988
+ The number of primes in a short interval. 1988 D. R. Heath‐Brown
+ Primes in short intervals 1984 Henryk Iwaniec
J. Pintz
+ Primes in short intervals 1982 Glyn Harman
+ PDF Chat Primes in short intervals. 1985 Helmut Maier
+ A note on the distribution of primes in short intervals 1984 J. Pintz
+ Positive Proportion of Small Gaps Between Consecutive Primes 2011 D. A. Goldston
J. Pintz
C. Y. Yildirim
+ PDF Chat A note on primes in short intervals 2008 Danilo Bazzanella
+ $\lambda$-th moments of primes in short intervals 2004 Tsz Ho Chan
+ Consecutive primes in short intervals 2020 Artyom Olegovich Radomskii
+ PDF Chat Longer than average intervals containing no primes 1987 A. Y. Cheer
D. A. Goldston

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Large prime gaps and probabilistic models 2023 William D. Banks
Kevin Ford
Terence Tao