Type: Article
Publication Date: 2019-05-17
Citations: 1
DOI: https://doi.org/10.1017/s0004972719000467
We prove that for every $m\geq 0$ there exists an $\unicode[STIX]{x1D700}=\unicode[STIX]{x1D700}(m)>0$ such that if $0<\unicode[STIX]{x1D706}<\unicode[STIX]{x1D700}$ and $x$ is sufficiently large in terms of $m$ and $\unicode[STIX]{x1D706}$ , then $$\begin{eqnarray}|\{n\leq x:|[n,n+\unicode[STIX]{x1D706}\log n]\cap \mathbb{P}|=m\}|\gg _{m,\unicode[STIX]{x1D706}}x.\end{eqnarray}$$ The value of $\unicode[STIX]{x1D700}(m)$ and the dependence of the implicit constant on $\unicode[STIX]{x1D706}$ and $m$ may be made explicit. This is an improvement of the author’s previous result. Moreover, we will show that a careful investigation of the proof, apart from some slight changes, can lead to analogous estimates when allowing the parameters $m$ and $\unicode[STIX]{x1D706}$ to vary as functions of $x$ or replacing the set $\mathbb{P}$ of all primes by primes belonging to certain specific subsets.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Large prime gaps and probabilistic models | 2023 |
William D. Banks Kevin Ford Terence Tao |