Representations associated to small nilpotent orbits for complex Spin groups

Type: Article

Publication Date: 2018-10-25

Citations: 2

DOI: https://doi.org/10.1090/ert/517

Abstract

This paper provides a comparison between the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-structure of unipotent representations and regular sections of bundles on nilpotent orbits for complex groups of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Precisely, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G 0 equals upper S p i n left-parenthesis 2 n comma double-struck upper C right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>Spin</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">G_0 =\operatorname {Spin}(2n,\mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Spin complex group as a real group, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K approximately-equals upper G 0"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">K\cong G_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the complexification of the maximal compact subgroup of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G 0"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">G_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We compute <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spectra of the regular functions on some small nilpotent orbits <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {O}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> transforming according to characters <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="psi"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding="application/x-tex">\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Subscript upper K Baseline left-parenthesis script upper O right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>K</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C_{ K}(\mathcal {O})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> trivial on the connected component of the identity <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Subscript upper K Baseline left-parenthesis script upper O right-parenthesis Superscript 0"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>K</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mn>0</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">C_{ K}(\mathcal {O})^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We then match them with the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{K}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-types of the genuine (i.e., representations which do not factor to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper O left-parenthesis 2 n comma double-struck upper C right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>SO</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {SO}(2n,\mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) unipotent representations attached to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {O}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Representation Theory of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Representations associated to small nilpotent orbits for complex Spin groups 2017 Dan Barbasch
Wan-Yu Tsai
+ Representations associated to small nilpotent orbits for real Spin groups 2017 Dan Barbasch
Wan-Yu Tsai
+ Characteristic cycles of standard sheaves associated with open orbits 2007 Mladen Božičević
+ The orbit philosophy for complex Spin groups 2017 Dan Barbasch
Wan-Yu Tsai
+ Invariant measures on nilpotent orbits associated with holomorphic discrete series 2021 Mladen Božičević
+ Orbites Nilpotentes Sphériques et Représentations unipotentes associées: Le cas 𝑆𝐿_𝑛 2005 Hervé Sabourin
+ Cohomology of symplectic reductions of generic coadjoint orbits 2004 Rebecca Goldin
Augustin-Liviu Mare
+ PDF Chat 𝐾-invariant Kaehler structures on 𝐾_{𝐂}/𝐍 and the associated line bundles 1996 Meng-Kiat Chuah
+ PDF Chat Unipotent representations attached to the principal nilpotent orbit 2021 Lucas Mason-Brown
+ Pieces of nilpotent cones for classical groups 2011 Pramod N. Achar
Anthony Henderson
Eric Sommers
+ PDF Chat Regular functions of symplectic spherical nilpotent orbits and their quantizations 2015 Kayue Daniel Wong
+ PDF Chat A vanishing theorem for open orbits on complex flag manifolds 1984 Wilfried Schmid
Joseph A. Wolf
+ PDF Chat Spin characteristic classes and reduced 𝐾𝑆𝑝𝑖𝑛 group of a low-dimensional complex 1991 Bang He Li
Hai Bao Duan
+ The ascending central series of nilpotent Lie algebras with complex structure 2018 Adela Latorre
Luis Ugarte
Raquel Villacampa
+ Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture 2010 Peter Fiebig
+ Stable nilpotent orbital integrals on real reductive Lie algebras 2000 Robert Kottwitz
+ Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone 2003 Roman Bezrukavnikov
+ PDF Chat Representations of low copolarity 2022 André de Oliveira Gomes
Cláudio Gorodski
+ PDF Chat Complex geometry and the asymptotics of Harish-Chandra modules for real reductive Lie groups. I 1987 Luis Casian
David H. Collingwood
+ PDF Chat Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups 1987 Lawrence Corwin
Frederick Greenleaf
G. Grélaud