Adaptive estimation of high-dimensional signal-to-noise ratios

Type: Article

Publication Date: 2018-04-18

Citations: 44

DOI: https://doi.org/10.3150/17-bej975

Abstract

We consider the equivalent problems of estimating the residual variance, the proportion of explained variance $\eta$ and the signal strength in a high-dimensional linear regression model with Gaussian random design. Our aim is to understand the impact of not knowing the sparsity of the vector of regression coefficients and not knowing the distribution of the design on minimax estimation rates of $\eta$. Depending on the sparsity $k$ of the vector regression coefficients, optimal estimators of $\eta$ either rely on estimating the vector of regression coefficients or are based on $U$-type statistics. In the important situation where $k$ is unknown, we build an adaptive procedure whose convergence rate simultaneously achieves the minimax risk over all $k$ up to a logarithmic loss which we prove to be non avoidable. Finally, the knowledge of the design distribution is shown to play a critical role. When the distribution of the design is unknown, consistent estimation of explained variance is indeed possible in much narrower regimes than for known design distribution.

Locations

  • Bernoulli - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Adaptive estimation of High-Dimensional Signal-to-Noise Ratios 2016 Nicolas Verzélen
Élisabeth Gassiat
+ Adaptive estimation of High-Dimensional Signal-to-Noise Ratios 2016 Nicolas Verzélen
Élisabeth Gassiat
+ Adaptive Estimation of High Dimensional Partially Linear Model 2017 Fang Han
Zhao Ren
Yuxin Zhu
+ Adaptive Minimax Estimation over Sparse l q-Hulls 2012 Zhan Wang
Sandra Paterlini
Fuchang Gao
Yuhong Tang
+ Rate Optimal Estimation and Confidence Intervals for High-dimensional Regression with Missing Covariates 2017 Yining Wang
Jialei Wang
Sivaraman Balakrishnan
Aarti Singh
+ Adaptive Minimax Estimation over Sparse $\ell_q$-Hulls 2011 Zhan Wang
Sandra Paterlini
Fuchang Gao
Yuhong Yang
+ Adaptive Minimax Estimation over Sparse $\ell_q$-Hulls 2011 Zhan Wang
Sandra Paterlini
Frank Gao
Yuhong Yang
+ Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory 2013 Adel Javanmard
Andrea Montanari
+ Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory 2013 Adel Javanmard
Andrea Montanari
+ PDF Chat A note on the minimax risk of sparse linear regression 2024 Yilin Guo
S. Ghosh
Haolei Weng
Arian Maleki
+ Confidence intervals for high-dimensional linear regression: Minimax rates and adaptivity 2017 Tommaso Cai
Zijian Guo
+ Exact variable selection in sparse nonparametric models 2023 Natalia Stepanova
Marie Turcicova
+ Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity 2015 Tommaso Cai
Zijian Guo
+ SLOPE is adaptive to unknown sparsity and asymptotically minimax 2016 Weijie Su
Emmanuel J. Candès
+ SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax 2015 Weijie Su
Emmanuel J. Candès
+ Non-asymptotic bounds for the ℓ∞ estimator in linear regression with uniform noise 2023 Yufei Yi
Matey Neykov
+ High-Dimensional Regression with Unknown Variance 2012 Christophe Giraud
Sylvie Huet
Nicolas Verzélen
+ Nearly Optimal Sample Size in Hypothesis Testing for High-Dimensional Regression 2013 Adel Javanmard
Andrea Montanari
+ Nearly Optimal Sample Size in Hypothesis Testing for High-Dimensional Regression 2013 Adel Javanmard
Andrea Montanari
+ High-dimensional regression with unknown variance 2011 Christophe Giraud
Sylvie Huet
Nicolas Verzélen

Works That Cite This (37)

Action Title Year Authors
+ PDF Chat Estimation of the ℓ2-norm and testing in sparse linear regression with unknown variance 2022 Alexandra Carpentier
Olivier Collier
Laëtitia Comminges
Alexandre B. Tsybakov
Yuhao Wang
+ PDF Chat Semisupervised Inference for Explained Variance in High Dimensional Linear Regression and its Applications 2020 Tommaso Cai
Zijian Guo
+ Nonparametric estimation in a regression model with additive and multiplicative noise 2020 Christophe Chesneau
Salima El Kolei
Junke Kou
Fabien Navarro
+ PDF Chat Improving Heritability Estimation by a Variable Selection Approach in Sparse High Dimensional Linear Mixed Models 2018 Anna Bonnet
Céline Lévy‐Leduc
Élisabeth Gassiat
Roberto Toro
Thomas Bourgeron
+ PDF Chat Optimal sparsity testing in linear regression model 2021 Alexandra Carpentier
Nicolas Verzélen
+ Estimation of the $l_2$-norm and testing in sparse linear regression with unknown variance 2020 Alexandra Carpentier
Olivier Collier
Laëtitia Comminges
Alexandre B. Tsybakov
Yuhao Wang
+ Statistical Inference for Genetic Relatedness Based on High-Dimensional Logistic Regression 2022 Rong Ma
Zijian Guo
T. Tony Cai
Hongzhe Li
+ Multidimensional linear functional estimation in sparse Gaussian models and robust estimation of the mean 2019 Olivier Collier
Arnak S. Dalalyan
+ Uniform almost sure convergence rate of wavelet estimator for regression model with mixed noise 2023 Junke Kou
Qinmei Huang
Hao Zhang
+ PDF Chat Modified log-Sobolev inequalities, Beckner inequalities and moment estimates 2021 Radosław Adamczak
Bartłomiej Polaczyk
Michał Strzelecki