Unique Continuation, Runge Approximation and the Fractional Calderón Problem

Type: Article

Publication Date: 2019-06-19

Citations: 6

DOI: https://doi.org/10.5802/jedp.668

View Chat PDF

Abstract

In these notes for the proceedings of the “Journée Équations aux Dérivées Partielles”, we survey some of the recent progress in and the interplay of unique continuation, approximation and some related nonlocal inverse problems. In particular, we discuss the qualitative and quantitative global unique continuation properties of the fractional Laplacian and its Runge approximation properties. We explain how this leads to surprising results on the inverse problems for the associated operators.

Locations

  • Journées Équations aux dérivées partielles - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ Strong unique continuation for the higher order fractional Laplacian 2019 María Ángeles García‐Ferrero
Angkana Rüland
+ Strong unique continuation for the higher order fractional Laplacian 2019 María-Ángeles García-Ferrero
Angkana Rüland
+ PDF Chat On (global) unique continuation properties of the fractional discrete Laplacian 2024 Aingeru Fernández-Bertolin
Luz Roncal
Angkana Rüland
+ On (Global) Unique Continuation Properties of the Fractional Discrete Laplacian 2022 Aingeru Fernández-Bertolin
Luz Roncal
Angkana Rüland
+ PDF Chat Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems 2021 Giovanni Covi
Keijo Mönkkönen
Jesse Railo
+ Unique continuation property and Poincar\'e inequality for higher order fractional Laplacians with applications in inverse problems 2020 Giovanni Covi
Keijo Mönkkönen
Jesse Railo
+ The Calderón Problem for a Space-Time Fractional Parabolic Equation 2020 Ru-Yu Lai
Yi‐Hsuan Lin
Angkana Rüland
+ The Calder\'on problem for a space-time fractional parabolic equation 2019 Ru-Yu Lai
Yi‐Hsuan Lin
Angkana Rüland
+ PDF Chat Unique Continuation for $|\Delta u| ≤ V \; |\nabla u|$ and Related Problems 1990 Thomas Wolff
+ Uniqueness for the Fractional Calderón Problem with Quasilocal Perturbations 2022 Giovanni Covi
+ On the unique continuation of solutions to non-local non-linear dispersive equations 2020 Carlos E. Kenig
Didier Pilod
Gustavo Ponce
Luis Vega
+ PDF Chat The fractional Calderón problem: Low regularity and stability 2019 Angkana Rüland
Mikko Salo
+ PDF Chat On unique continuation for Schrödinger operators of fractional and higher orders 2013 Ihyeok Seo
+ Numerical continuation and the Gelfand problem 1998 Jeff S. McGough
+ Uniqueness for the fractional Calder\'on problem with quasilocal perturbations 2021 Giovanni Covi
+ On the unique continuation of solutions to non-local non-linear dispersive equations. 2020 Carlos E. Kenig
Didier Pilod
Gustavo Ponce
Luis Vega
+ On unique continuation for Schrödinger operators of fractional and higher orders 2013 Ihyeok Seo
+ PDF Chat Quantitative unique continuation for non-regular perturbations of the Laplacian 2024 Pedro Caro
Sylvain Ervedoza
Lotfi Thabouti
+ Carleman inequalities for fractional Laplacians and unique continuation 2014 Ihyeok Seo
+ PDF Chat On two methods for quantitative unique continuation results for some nonlocal operators 2020 María Ángeles García‐Ferrero
Angkana Rüland

Citing (50)

Action Title Year Authors
+ PDF Chat Unique Continuation for Fractional Schrödinger Equations with Rough Potentials 2014 Angkana Rüland
+ Controllability and Observability of Partial Differential Equations: Some Results and Open Problems 2007 Enrique Zuazua
+ Unique Continuation Problems for Partial Differential Equations 2004 Daniel Tataru
+ Functional analysis and partial differential equations 1959 Felix E. Browder
+ Hitchhikerʼs guide to the fractional Sobolev spaces 2011 Eleonora Di Nezza
Giampiero Palatucci
Enrico Valdinoci
+ PDF Chat The Calderón problem with partial data on manifolds and applications 2013 Carlos E. Kenig
Mikko Salo
+ Antilocality and a Reeh-Schlieder theorem on manifolds 1993 Rainer Verch
+ Electrical impedance tomography and Calderón's problem 2009 Günther Uhlmann
+ Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients 2001 Herbert Koch
Daniel Tataru
+ PDF Chat A new formulation of Harnackʼs inequality for nonlocal operators 2011 Moritz Kaßmann
+ PDF Chat Unique Continuation Property and Local Asymptotics of Solutions to Fractional Elliptic Equations 2014 Mouhamed Moustapha Fall
Veronica Felli
+ A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations 1956 Peter D. Lax
+ Reconstruction of the potential from partial Cauchy data for the Schroedinger equation 2004 Günther Uhlmann
Habib Ammari
+ PDF Chat Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution 1956 Bernard Malgrange
+ The Calderón problem for variable coefficients nonlocal elliptic operators 2017 Tuhin Ghosh
Yi‐Hsuan Lin
Jingni Xiao
+ Quantitative Approximation Properties for the Fractional Heat Equation 2017 Angkana Rüland
Mikko Salo
+ PDF Chat The fractional Calderón problem: Low regularity and stability 2019 Angkana Rüland
Mikko Salo
+ Monotonicity-based inversion of the fractional Schr\"odinger equation 2017 Bastian Harrach
Yi‐Hsuan Lin
+ Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators 2017 Xinlin Cao
Yi‐Hsuan Lin
Hongyu Liu
+ PDF Chat Uniqueness and reconstruction for the fractional Calderón problem with a single measurement 2020 Tuhin Ghosh
Angkana Rüland
Mikko Salo
Günther Uhlmann
+ The nodal set of solutions to some elliptic problems: singular nonlinearities 2018 Nicola Soave
Susanna Terracini
+ Determining a fractional Helmholtz system with unknown source and medium parameter 2018 Xinlin Cao
Hongyu Liu
+ PDF Chat Local density of Caputo-stationary functions of any order 2018 Alessandro Carbotti
Serena Dipierro
Enrico Valdinoci
+ Inverse Problem for Fractional-Laplacian with Lower Order Non-local Perturbations 2018 Sombuddha Bhattacharyya
Tuhin Ghosh
Günther Uhlmann
+ Local density of solutions of time and space fractional equations 2018 Alessandro Carbotti
Serena Dipierro
Enrico Valdinoci
+ Inverse problems for a fractional conductivity equation 2018 Giovanni Covi
+ PDF Chat Quantitative Runge Approximation and Inverse Problems 2017 Angkana Rüland
Mikko Salo
+ PDF Chat Local Approximation of Arbitrary Functions by Solutions of Nonlocal Equations 2018 Serena Dipierro
Ovidiu Savin
Enrico Valdinoci
+ PDF Chat Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms 2019 Angkana Rüland
+ PDF Chat Unique Continuation for Fractional Orders of Elliptic Equations 2017 Hui Yu
+ The nodal set of solutions to some elliptic problems: Singular nonlinearities 2019 Nicola Soave
Susanna Terracini
+ PDF Chat Quantitative approximation properties for the fractional heat equation 2019 Angkana Rüland
Mikko Salo
+ PDF Chat Knots and links in steady solutions of the Euler equation 2011 Alberto Enciso
Daniel Peralta‐Salas
+ PDF Chat The variable coefficient thin obstacle problem: Carleman inequalities 2016 Herbert Koch
Angkana Rüland
Wenhui Shi
+ PDF Chat Unique continuation for fractional Schrödinger operators in three and higher dimensions 2014 Ihyeok Seo
+ Inverse problems for a fractional conductivity equation 2019 Giovanni Covi
+ Unique continuation properties for relativistic Schrödinger operators with a singular potential 2015 Mouhamed Moustapha Fall
Veronica Felli
+ PDF Chat Recent progress in the Calderón problem with partial data 2014 Carlos E. Kenig
Mikko Salo
+ The nodal set of solutions to some elliptic problems: Sublinear equations, and unstable two-phase membrane problem 2018 Nicola Soave
Susanna Terracini
+ PDF Chat Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data 2019 Angkana Rüland
Eva Sincich