Convolutional neural networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis

Type: Article

Publication Date: 2019-07-11

Citations: 26

DOI: https://doi.org/10.1051/0004-6361/201935211

View Chat PDF

Abstract

We describe a novel method for the application of Convolutional Neural Networks (CNNs) to fields defined on the sphere, using the HEALPix tessellation scheme. Specifically, We have developed a pixel-based approach to implement convolutional layers on the spherical surface, similarly to what is commonly done for CNNs in Euclidian space. The algorithm is fully integrable with existing libraries for NNs (e.g., PyTorch or TensorFlow). We present two applications: (i) recognition of handwritten digits projected on the sphere; (ii) estimation of cosmological parameter from Cosmic Microwave Background (CMB) simulated maps. We have built a simple NN architecture, consisting in four convolutional+pooling layers, and have used it for all the applications explored herein. For what concerns the handwritten digits, our CNN reaches an accuracy of about 95%, comparable with other existing spherical CNNs. For CMB applications, we have tested the CNN on the estimation of a "mock" parameter, defining the angular scale at which the power spectrum of a Gaussian field projected on the sphere peaks. We have estimated this parameter directly from maps, in several cases: temperature and polarization, presence of noise and partial sky coverage. In all the cases, the NN performances are comparable with those from standard spectrum-based bayesian methods. We demonstrate, for the first time, the capability of CNNs to extract information from polarization fields and to distinguish between E and B-modes. Lastly, we have applied our CNN to the estimation of the Thomson scattering optical depth at reionization (tau) from simulated CMB maps. Even without any specific optimization of the NN architecture, we reach an accuracy comparable with standard bayesian methods. This work represents a first step towards the exploitation of NNs in CMB parameter estimation and demonstrates the feasibility of our approach.

Locations

  • Astronomy and Astrophysics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Archivio Istituzionale della Ricerca (Universita Degli Studi Di Milano) - View - PDF
  • Springer Link (Chiba Institute of Technology) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat DeepWiener: Neural Networks for CMB polarization maps and power spectrum computation 2024 Belén Costanza
Claudia G. Scóccola
Matías Zaldarriaga
+ PDF Chat HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere 2005 K. M. Górski
E. Hivon
A. J. Banday
B. D. Wandelt
F. K. Hansen
M. Reinecke
Matthias Bartelmann
+ PDF Chat FAST AND OPTIMAL COSMIC MICROWAVE BACKGROUND LENSING USING STATISTICAL INTERPOLATION ON THE SPHERE 2010 Guilhem Lavaux
B. D. Wandelt
+ Capse.jl: efficient and auto-differentiable CMB power spectra emulation 2023 Marco Bonici
F. Bianchini
Jaime Ruiz-Zapatero
+ Minkowski Functionals of CMB polarisation intensity with Pynkowski: theory and application to Planck and future data 2022 A. Carones
Javier Carrón Duque
Domenico Marinucci
M. Migliaccio
N. Vittorio
+ PDF Chat DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications 2019 Nathanaël Perraudin
Michaël Defferrard
T. Kacprzak
Raphaël Sgier
+ Enhancing CMB map reconstruction and power spectrum estimation with convolutional neural networks 2023 Belén Costanza
Claudia G. Scóccola
Matías Zaldarriaga
+ Recovering the E and B-mode CMB polarization at sub-degree scales with neural networks 2023 J. M. Casas
L. Bonavera
J. González-Nuevo
Giuseppe Puglisi
C. Baccigalupi
M. M. Cueli
D. Crespo
Carlos González-Gutiérrez
F. J. de Cos
+ CMBFSCNN: Cosmic Microwave Background Polarization Foreground Subtraction with a Convolutional Neural Network 2024 Ye-Peng Yan
Siyu Li
Guo-Jian Wang
Zirui Zhang
Jun‐Qing Xia
+ PDF Chat CMBFSCNN: Cosmic Microwave Background Polarization Foreground Subtraction with Convolutional Neural Network 2024 Ye-Peng Yan
Siyu Li
Guojian Wang
Zirui Zhang
Jun‐Qing Xia
+ PDF Chat Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA 2020 Sultan Hassan
Sambatra Andrianomena
Caitlin Doughty
+ rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data 2019 Daniel Fryer
Ming Li
Andriy Olenko
+ PDF Chat rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data 2020 Daniel Fryer
Ming Li
Andriy Olenko
+ PDF Chat Full-sky Cosmic Microwave Background Foreground Cleaning Using Machine Learning 2020 Matthew A. Petroff
Graeme E. Addison
C. L. Bennett
J. L. Weiland
+ Inference of the optical depth to reionization $τ$ from $\textit{Planck}$ CMB maps with convolutional neural networks 2023 Kevin Wolz
N. Krachmalnicoff
L. Pagano
+ The Universe is worth $64^3$ pixels: Convolution Neural Network and Vision Transformers for Cosmology 2023 Se Yeon Hwang
Cristiano G. Sabiu
Inkyu Park
Sungwook E. Hong
+ PDF Chat SkyReconNet: A Deep Learning Inpainting Approach for Enhanced CMB Map Reconstruction 2025 Reyhan D. Lambaga
Vipin Sudevan
Pisin Chen
+ Inference of the optical depth to reionization <i>τ</i> from <i>Planck</i> CMB maps with convolutional neural networks 2023 Kevin Wolz
N. Krachmalnicoff
L. Pagano
+ PDF Chat CENN: A fully convolutional neural network for CMB recovery in realistic microwave sky simulations 2022 J. M. Casas
L. Bonavera
J. González-Nuevo
C. Baccigalupi
M. M. Cueli
D. Crespo
E. Goitia
Joana Santos
M.L. Sánchez
F. J. de Cos
+ PDF Chat Application of 3D U-Net Neural Networks in Extracting the Epoch of Reionization Signal from SKA-Low Observations Based on Real Observations of NCP Field from LOFAR 2024 Li-Yang Gao
L. V. E. Koopmans
Florent Mertens
S. Munshi
Yichao Li
S. A. Brackenhoff
E. Ceccotti
J. Kariuki Chege
Anshuman Acharya
Raghunath Ghara

Cited by (20)

Action Title Year Authors
+ PDF Chat Full-sky Cosmic Microwave Background Foreground Cleaning Using Machine Learning 2020 Matthew A. Petroff
Graeme E. Addison
C. L. Bennett
J. L. Weiland
+ DeepSphere: towards an equivariant graph-based spherical CNN 2019 Michaël Defferrard
Nathanaël Perraudin
T. Kacprzak
Raphaël Sgier
+ PDF Chat ForSE: A GAN-based Algorithm for Extending CMB Foreground Models to Subdegree Angular Scales 2021 N. Krachmalnicoff
Giuseppe Puglisi
+ PDF Chat Classifying CMB time-ordered data through deep neural networks 2020 Felipe Rojas
L. Maurin
Rolando Dünner
Karim Pichara
+ PDF Chat Planet cartography with neural learned regularization 2020 A. Asensio Ramos
Ε. Πάλλη
+ PDF Chat Emulation of Cosmological Mass Maps with Conditional Generative Adversarial Networks 2021 Nathanaël Perraudin
Sandro Marcon
Aurélien Lucchi
Tomasz Kacprzak
+ PDF Chat DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning 2021 Zhen Lin
N. Huang
Camille Avestruz
W. L. K. Wu
Shivani Trivedi
João Caldeira
B. Nord
+ PDF Chat A generative model of galactic dust emission using variational autoencoders 2021 B. Thorne
Lloyd Knox
Karthik Prabhu
+ PDF Chat DeepCMB: Lensing reconstruction of the cosmic microwave background with deep neural networks 2019 João Caldeira
W. L. K. Wu
B. Nord
Camille Avestruz
Shivani Trivedi
K. T. Story
+ PDF Chat Parameter estimation for the cosmic microwave background with Bayesian neural networks 2020 Héctor J. Hortúa
Riccardo Volpi
Dimitri Marinelli
Luigi Malagò
+ PDF Chat Power of halometry 2020 Siddharth Mishra-Sharma
Ken Van Tilburg
Neal Weiner
+ PDF Chat Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh 2023 Matthias Karlbauer
Nathaniel Cresswell‐Clay
Dale R. Durran
Raul A. Moreno
Thorsten Kurth
Boris Bonev
Noah Brenowitz
Martin V. Butz
+ Accelerating MCMC algorithms through Bayesian Deep Networks 2020 Héctor J. Hortúa
Riccardo Volpi
Dimitri Marinelli
Luigi Malagò
+ PDF Chat Foreground model recognition through Neural Networks for CMB <i>B</i>-mode observations 2020 F. Farsian
N. Krachmalnicoff
C. Baccigalupi
+ PDF Chat Identifying nearby sources of ultra-high-energy cosmic rays with deep learning 2020 O. Kalashev
М. С. Пширков
M. Yu. Zotov
+ PDF Chat A convolutional-neural-network estimator of CMB constraints on dark matter energy injection 2021 Wei-Chih Huang
Jui-Lin Kuo
Yue-Lin Sming Tsai
+ PDF Chat Filling in Cosmic Microwave Background map missing regions via Generative Adversarial Networks 2021 Alireza Vafaei Sadr
F. Farsian
+ PDF Chat Inpainting Galactic Foreground Intensity and Polarization Maps Using Convolutional Neural Networks 2020 Giuseppe Puglisi
Xiran Bai
+ A study of an energy-dependent anisotropy of cosmic rays beyond the GZK cut-off with deep neural networks 2021 O. Kalashev
М. С. Пширков
M. Yu. Zotov
+ PDF Chat OSLO: On-the-Sphere Learning for Omnidirectional Images and Its Application to 360-Degree Image Compression 2022 Navid Mahmoudian Bidgoli
Roberto Gerson de Albuquerque Azevedo
Thomas Maugey
Aline Roumy
Pascal Frossard

Citing (23)

Action Title Year Authors
+ PDF Chat Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey 2007 Will J. Percival
Shaun Cole
Daniel J. Eisenstein
R. C. Nichol
J. A. Peacock
Adrian Pope
Alexander S. Szalay
+ PDF Chat THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES 2015 Peter Sullivan
Joshua N. Winn
Zachory K. Berta-Thompson
David Charbonneau
Drake Deming
Courtney D. Dressing
David W. Latham
Alan M. Levine
P. R. McCullough
Timothy D. Morton
+ PDF Chat HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere 2005 K. M. Górski
E. Hivon
A. J. Banday
B. D. Wandelt
F. K. Hansen
M. Reinecke
Matthias Bartelmann
+ PDF Chat Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data 2014 M. G. Aartsen
M. Ackermann
J. Adams
J. A. Aguilar
M. Ahlers
M. Ahrens
D. Altmann
T. Anderson
C. Argüelles
T. C. Arlen
+ PDF Chat SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration 2004 Matthew A. Bershady
David R. Andersen
Justin Harker
L. W. Ramsey
Marc Verheijen
+ PDF Chat A TWO-DIMENSIONAL INFRARED MAP OF THE EXTRASOLAR PLANET HD 189733b 2012 Carl Majeau
Eric Agol
Nicolas B. Cowan
+ PDF Chat Rotation-invariant convolutional neural networks for galaxy morphology prediction 2015 Sander Dieleman
Kyle Willett
Joni Dambre
+ PDF Chat ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS 2014 Greg L. Bryan
Michael L. Norman
Brian W. O’Shea
Tom Abel
John Wise
Matthew Turk
Daniel R. Reynolds
David Collins
Peng Wang
Samuel W. Skillman
+ PDF Chat SkyNet: an efficient and robust neural network training tool for machine learning in astronomy 2014 P. B. Graff
Farhan Feroz
M. P. Hobson
A. Lasenby
+ PDF Chat Neural networks and the separation of cosmic microwave background and astrophysical signals in sky maps 2000 C. Baccigalupi
Luigi Bedini
C. Burigana
G. de Zotti
A. Farusi
D. Maino
M. Maris
F. Perrotta
Emanuele Salerno
L. Toffolatti
+ PDF Chat XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars 2005 M. Tristram
J. F. Macías–Pérez
C. Renault
D. Santos
+ PDF Chat Cosmological parameters from CMB and other data: A Monte Carlo approach 2002 Antony Lewis
Sarah Bridle
+ PDF Chat The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples 2014 Lauren Anderson
Éric Aubourg
S. Bailey
Florian Beutler
Vaishali Bhardwaj
Michael R. Blanton
A. Bolton
J. Brinkmann
Joel R. Brownstein
A. Burden
+ PDF Chat Rapid Bayesian position reconstruction for gravitational-wave transients 2016 L. P. Singer
Larry R. Price
+ Horovod: fast and easy distributed deep learning in TensorFlow 2018 Alexander Sergeev
Mike Del Balso
+ PDF Chat DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications 2019 Nathanaël Perraudin
Michaël Defferrard
T. Kacprzak
Raphaël Sgier
+ <i>Planck</i>2015 results 2016 R. Adam
P. A. R. Ade
N. Aghanim
Y. Akrami
M. I. R. Alves
F. Argüeso
M. Arnaud
Frederico Arroja
M. Ashdown
J. Aumont
+ PDF Chat DeepCMB: Lensing reconstruction of the cosmic microwave background with deep neural networks 2019 João Caldeira
W. L. K. Wu
B. Nord
Camille Avestruz
Shivani Trivedi
K. T. Story
+ PDF Chat ANN<i>z</i>: Estimating Photometric Redshifts Using Artificial Neural Networks 2004 Adrian Collister
O. Lahav
+ PDF Chat Fast cosmological parameter estimation using neural networks 2007 Tom Auld
M. Bridges
Michael P. Hobson
S. F. Gull
+ PDF Chat Planck 2018 results. VI. Cosmological parameters 2018 N. Aghanim
Y. Akrami
M. Ashdown
J. Aumont
C. Baccigalupi
M. Ballardini
A. J. Banday
R. B. Barreiro
N. Bartolo
S. Basak
+ <i>FERMI</i> LARGE AREA TELESCOPE THIRD SOURCE CATALOG 2015 F. Acero
M. Ackermann
M. Ajello
A. Albert
W. B. Atwood
M. Axelsson
L. Baldini
J. Ballet
G. Barbiellini
D. Bastieri
+ PDF Chat The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample 2012 Lauren Anderson
É. Aubourg
S. Bailey
Dmitry Bizyaev
Michael R. Blanton
A. Bolton
J. Brinkmann
Joel R. Brownstein
A. Burden
Antonio J. Cuesta