Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Deep Probabilistic Modeling of Glioma Growth
Jens Petersen
,
Paul F. Jäger
,
Fabian Isensee
,
Simon Kohl
,
Ulf Neuberger
,
Wolfgang Wick
,
Jürgen Debus
,
Sabine Heiland
,
Martin Bendszus
,
Philipp Kickingereder
Type:
Preprint
Publication Date:
2019-07-09
Citations:
6
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
Deep Probabilistic Modeling of Glioma Growth
2019
Jens Petersen
Paul F. Jäger
Fabian Isensee
Simon Kohl
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
Philipp Kickingereder
+
Deep Probabilistic Modeling of Glioma Growth
2019
Jens Petersen
Paul F. Jäger
Fabian Isensee
Simon Kohl
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
Philipp Kickingereder
+
Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction
2023
Qinghui Liu
Elies Fuster‐García
Ivar Thokle Hovden
Donatas Sederevičius
Karoline Skogen
Bradley J. MacIntosh
Edvard Grødem
Till Schellhorn
Petter Brandal
Atle Bjørnerud
+
Continuous-Time Deep Glioma Growth Models
2021
Jens Petersen
Fabian Isensee
Gregor Köhler
Paul F. Jäger
David Zimmerer
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
+
Continuous-Time Deep Glioma Growth Models
2021
Jens Petersen
Fabian Isensee
Gregor Köhler
Paul F. Jäger
David Zimmerer
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
+
PDF
Chat
Deep Learning for Reaction-Diffusion Glioma Growth Modeling: Towards a Fully Personalized Model?
2022
Corentin Martens
Antonin Rovaï
Daniele Bonatto
Thierry Metens
Olivier Debeir
Christine Decaestecker
Serge Goldman
Gaëtan Van Simaeys
+
Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a Fully Personalised Model?
2021
Corentin Martens
Antonin Rovaï
Daniele Bonatto
Thierry Metens
Olivier Debeir
Christine Decaestecker
Serge Goldman
Gaëtan Van Simaeys
+
Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a Fully Personalised Model?
2021
Corentin Martens
Antonin Rovaï
Daniele Bonatto
Thierry Metens
Olivier Debeir
Christine Decaestecker
Serge Goldman
Gaëtan Van Simaeys
+
PDF
Chat
Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a Fully Personalised Model?
2021
Corentin Martens
Antonin Rovaï
Daniele Bonatto
Thierry Metens
Olivier Debeir
Christine Decaestecker
Serge Goldman
Gaëtan Van Simaeys
+
Deep learning characterization of brain tumours with diffusion weighted imaging
2022
Cameron Meaney
Sunit Das
Errol Colak
Mohammad Kohandel
+
PDF
Chat
Deep Learning Characterization of Brain Tumours With Diffusion Weighted Imaging
2022
Cameron Meaney
Sunit Das
Errol Colak
Mohammad Kohandel
+
Real-time Bayesian personalization via a learnable brain tumor growth model.
2020
Ivan Ezhov
Tudor Mot
Suprosanna Shit
Jana Lipková
Johannes C. Paetzold
Florian Kofler
Fernando Navarro
Marie Metz
Benedikt Wiestler
Bjoern Menze
+
PDF
Chat
A Generative Approach for Image-Based Modeling of Tumor Growth
2011
Bjoern Menze
Koen Van Leemput
Antti Honkela
Ender Konukoglu
Marc‐André Weber
Nicholas Ayache
Polina Golland
+
A generative approach for image-based modeling of tumor growth
2011
Bjoern Menze
Koen Van Leemput
Antti Honkela
Ender Konukoglu
Marc‐André Weber
Nicholas Ayache
Polina Golland
+
Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans
2023
Zirui Zhang
Ivan Ezhov
Michał Balcerak
Andy Zhu
Benedikt Wiestler
Bjoern Menze
John Lowengrub
+
A Classification-Based Glioma Diffusion Model Using MRI Data
2006
Marianne Morris
Russell Greiner
Jörg Sander
Albert Murtha
Mark Schmidt
+
Diffusion Models for Implicit Image Segmentation Ensembles
2021
Julia Wolleb
Robin Sandkühler
Florentin Bieder
Philippe Valmaggia
Philippe C. Cattin
+
PDF
Chat
Diffusion Models for Implicit Image Segmentation Ensembles
2021
Julia Wolleb
Robin Sandkühler
Florentin Bieder
Philippe Valmaggia
Philippe C. Cattin
+
PDF
Chat
Continuous-Time Deep Glioma Growth Models
2021
Jens Petersen
Fabian Isensee
Gregor Köhler
Paul F. Jäger
David Zimmerer
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
+
PDF
Chat
Learn-Morph-Infer: A new way of solving the inverse problem for brain tumor modeling
2022
Ivan Ezhov
Kevin Scibilia
Katharina Franitza
Felix Steinbauer
Suprosanna Shit
Lucas Zimmer
Jana Lipková
Florian Kofler
Johannes C. Paetzold
Luca Canalini
Works That Cite This (3)
Action
Title
Year
Authors
+
Real-time Bayesian personalization via a learnable brain tumor growth model.
2020
Ivan Ezhov
Tudor Mot
Suprosanna Shit
Jana Lipková
Johannes C. Paetzold
Florian Kofler
Fernando Navarro
Marie Metz
Benedikt Wiestler
Bjoern Menze
+
PDF
Chat
Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules
2020
Yamin Li
Jiancheng Yang
Yi Xu
Jingwei Xu
Xiaodan Ye
Guangyu Tao
Xueqian Xie
Guixue Liu
+
An Uncertainty-aware Hierarchical Probabilistic Network for Early Prediction, Quantification and Segmentation of Pulmonary Tumour Growth.
2021
Xavier Rafael-Palou
Anton Aubanell
Mario Ceresa
Vicent Ribas
Gemma Piella
Miguel Á. González Ballester
Works Cited by This (8)
Action
Title
Year
Authors
+
PDF
Chat
A Generative Approach for Image-Based Modeling of Tumor Growth
2011
Bjoern Menze
Koen Van Leemput
Antti Honkela
Ender Konukoglu
Marc‐André Weber
Nicholas Ayache
Polina Golland
+
Tumor invasion margin on the Riemannian space of brain fibers
2011
Parisa Mosayebi
Dana Cobzaş
Albert Murtha
Martin Jägersand
+
Glioma follow white matter tracts: a multiscale DTI-based model
2014
Christian Engwer
Thomas Hillen
Markus Knappitsch
Christina Surulescu
+
PDF
Chat
Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model
2016
Matthieu Lê
Hervé Delingette
Jayashree Kalpathy–Cramer
Elizabeth R. Gerstner
Tracy Batchelor
Jan Unkelbach
Nicholas Ayache
+
PDF
Chat
Image-based modeling of tumor growth in patients with glioma.
2011
Bjoern Menze
Erin Stretton
Ender Konukoğlu
Nicholas Ayache
+
PDF
Chat
Convolutional Invasion and Expansion Networks for Tumor Growth Prediction
2017
Ling Zhang
Le Lü
Ronald M. Summers
Electron Kebebew
Jianhua Yao
+
PDF
Chat
Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference
2019
Jana Lipková
Panagiotis Angelikopoulos
Stephen Wu
Esther Alberts
Benedikt Wiestler
Christian Diehl
Christine Preibisch
Thomas Pyka
Stephanie E. Combs
Panagiotis Hadjidoukas
+
A Probabilistic U-Net for Segmentation of Ambiguous Images
2018
Simon Kohl
Bernardino Romera‐Paredes
Clemens Meyer
Jeffrey De Fauw
Joseph R. Ledsam
Klaus H. Maier‐Hein
S. M. Ali Eslami
Danilo Jimenez Rezende
Olaf Ronneberger