Deep Probabilistic Modeling of Glioma Growth

Type: Preprint

Publication Date: 2019-07-09

Citations: 6

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ PDF Chat Deep Probabilistic Modeling of Glioma Growth 2019 Jens Petersen
Paul F. Jäger
Fabian Isensee
Simon Kohl
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
Philipp Kickingereder
+ Deep Probabilistic Modeling of Glioma Growth 2019 Jens Petersen
Paul F. Jäger
Fabian Isensee
Simon Kohl
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
Philipp Kickingereder
+ Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction 2023 Qinghui Liu
Elies Fuster‐García
Ivar Thokle Hovden
Donatas Sederevičius
Karoline Skogen
Bradley J. MacIntosh
Edvard Grødem
Till Schellhorn
Petter Brandal
Atle Bjørnerud
+ Continuous-Time Deep Glioma Growth Models 2021 Jens Petersen
Fabian Isensee
Gregor Köhler
Paul F. Jäger
David Zimmerer
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
+ Continuous-Time Deep Glioma Growth Models 2021 Jens Petersen
Fabian Isensee
Gregor Köhler
Paul F. Jäger
David Zimmerer
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
+ PDF Chat Deep Learning for Reaction-Diffusion Glioma Growth Modeling: Towards a Fully Personalized Model? 2022 Corentin Martens
Antonin Rovaï
Daniele Bonatto
Thierry Metens
Olivier Debeir
Christine Decaestecker
Serge Goldman
Gaëtan Van Simaeys
+ Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a Fully Personalised Model? 2021 Corentin Martens
Antonin Rovaï
Daniele Bonatto
Thierry Metens
Olivier Debeir
Christine Decaestecker
Serge Goldman
Gaëtan Van Simaeys
+ Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a Fully Personalised Model? 2021 Corentin Martens
Antonin Rovaï
Daniele Bonatto
Thierry Metens
Olivier Debeir
Christine Decaestecker
Serge Goldman
Gaëtan Van Simaeys
+ PDF Chat Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a Fully Personalised Model? 2021 Corentin Martens
Antonin Rovaï
Daniele Bonatto
Thierry Metens
Olivier Debeir
Christine Decaestecker
Serge Goldman
Gaëtan Van Simaeys
+ Deep learning characterization of brain tumours with diffusion weighted imaging 2022 Cameron Meaney
Sunit Das
Errol Colak
Mohammad Kohandel
+ PDF Chat Deep Learning Characterization of Brain Tumours With Diffusion Weighted Imaging 2022 Cameron Meaney
Sunit Das
Errol Colak
Mohammad Kohandel
+ Real-time Bayesian personalization via a learnable brain tumor growth model. 2020 Ivan Ezhov
Tudor Mot
Suprosanna Shit
Jana Lipková
Johannes C. Paetzold
Florian Kofler
Fernando Navarro
Marie Metz
Benedikt Wiestler
Bjoern Menze
+ PDF Chat A Generative Approach for Image-Based Modeling of Tumor Growth 2011 Bjoern Menze
Koen Van Leemput
Antti Honkela
Ender Konukoglu
Marc‐André Weber
Nicholas Ayache
Polina Golland
+ A generative approach for image-based modeling of tumor growth 2011 Bjoern Menze
Koen Van Leemput
Antti Honkela
Ender Konukoglu
Marc‐André Weber
Nicholas Ayache
Polina Golland
+ Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans 2023 Zirui Zhang
Ivan Ezhov
Michał Balcerak
Andy Zhu
Benedikt Wiestler
Bjoern Menze
John Lowengrub
+ A Classification-Based Glioma Diffusion Model Using MRI Data 2006 Marianne Morris
Russell Greiner
Jörg Sander
Albert Murtha
Mark Schmidt
+ Diffusion Models for Implicit Image Segmentation Ensembles 2021 Julia Wolleb
Robin Sandkühler
Florentin Bieder
Philippe Valmaggia
Philippe C. Cattin
+ PDF Chat Diffusion Models for Implicit Image Segmentation Ensembles 2021 Julia Wolleb
Robin Sandkühler
Florentin Bieder
Philippe Valmaggia
Philippe C. Cattin
+ PDF Chat Continuous-Time Deep Glioma Growth Models 2021 Jens Petersen
Fabian Isensee
Gregor Köhler
Paul F. Jäger
David Zimmerer
Ulf Neuberger
Wolfgang Wick
Jürgen Debus
Sabine Heiland
Martin Bendszus
+ PDF Chat Learn-Morph-Infer: A new way of solving the inverse problem for brain tumor modeling 2022 Ivan Ezhov
Kevin Scibilia
Katharina Franitza
Felix Steinbauer
Suprosanna Shit
Lucas Zimmer
Jana Lipková
Florian Kofler
Johannes C. Paetzold
Luca Canalini

Works Cited by This (8)

Action Title Year Authors
+ PDF Chat A Generative Approach for Image-Based Modeling of Tumor Growth 2011 Bjoern Menze
Koen Van Leemput
Antti Honkela
Ender Konukoglu
Marc‐André Weber
Nicholas Ayache
Polina Golland
+ Tumor invasion margin on the Riemannian space of brain fibers 2011 Parisa Mosayebi
Dana Cobzaş
Albert Murtha
Martin Jägersand
+ Glioma follow white matter tracts: a multiscale DTI-based model 2014 Christian Engwer
Thomas Hillen
Markus Knappitsch
Christina Surulescu
+ PDF Chat Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model 2016 Matthieu Lê
Hervé Delingette
Jayashree Kalpathy–Cramer
Elizabeth R. Gerstner
Tracy Batchelor
Jan Unkelbach
Nicholas Ayache
+ PDF Chat Image-based modeling of tumor growth in patients with glioma. 2011 Bjoern Menze
Erin Stretton
Ender Konukoğlu
Nicholas Ayache
+ PDF Chat Convolutional Invasion and Expansion Networks for Tumor Growth Prediction 2017 Ling Zhang
Le Lü
Ronald M. Summers
Electron Kebebew
Jianhua Yao
+ PDF Chat Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference 2019 Jana Lipková
Panagiotis Angelikopoulos
Stephen Wu
Esther Alberts
Benedikt Wiestler
Christian Diehl
Christine Preibisch
Thomas Pyka
Stephanie E. Combs
Panagiotis Hadjidoukas
+ A Probabilistic U-Net for Segmentation of Ambiguous Images 2018 Simon Kohl
Bernardino Romera‐Paredes
Clemens Meyer
Jeffrey De Fauw
Joseph R. Ledsam
Klaus H. Maier‐Hein
S. M. Ali Eslami
Danilo Jimenez Rezende
Olaf Ronneberger