Exploiting Temporal Context for 3D Human Pose Estimation in the Wild

Type: Article

Publication Date: 2019-06-01

Citations: 270

DOI: https://doi.org/10.1109/cvpr.2019.00351

Abstract

We present a bundle-adjustment-based algorithm for recovering accurate 3D human pose and meshes from monocular videos. Unlike previous algorithms which operate on single frames, we show that reconstructing a person over an entire sequence gives extra constraints that can resolve ambiguities. This is because videos often give multiple views of a person, yet the overall body shape does not change and 3D positions vary slowly. Our method improves not only on standard mocap-based datasets like Human 3.6M -- where we show quantitative improvements -- but also on challenging in-the-wild datasets such as Kinetics. Building upon our algorithm, we present a new dataset of more than 3 million frames of YouTube videos from Kinetics with automatically generated 3D poses and meshes. We show that retraining a single-frame 3D pose estimator on this data improves accuracy on both real-world and mocap data by evaluating on the 3DPW and HumanEVA datasets.

Locations

  • arXiv (Cornell University) - View - PDF
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - View

Similar Works

Action Title Year Authors
+ Exploiting temporal context for 3D human pose estimation in the wild 2019 Anurag Arnab
Carl Doersch
Andrew Zisserman
+ Exploiting temporal context for 3D human pose estimation in the wild 2019 Anurag Arnab
Carl Doersch
Andrew Zisserman
+ PDF Chat Learning 3D Human Dynamics From Video 2019 Angjoo Kanazawa
Jason Zhang
Panna Felsen
Jitendra Malik
+ Learning 3D Human Dynamics from Video 2018 Angjoo Kanazawa
Jason Zhang
Panna Felsen
Jitendra Malik
+ TEMP3D: Temporally Continuous 3D Human Pose Estimation Under Occlusions 2023 Rohit Lal
Yash Garg
Arindam Dutta
Calvin-Khang Ta
Dripta S. Raychaudhuri
M. Salman Asif
Amit K. Roy–Chowdhury
+ TEMPO: Efficient Multi-View Pose Estimation, Tracking, and Forecasting 2023 Rohan Choudhury
Kris Kitani
LĂĄszlĂł A. Jeni
+ PDF Chat TEMPO: Efficient Multi-View Pose Estimation, Tracking, and Forecasting 2023 Rohan Choudhury
Kris Kitani
LĂĄszlĂł A. Jeni
+ SMPLy Benchmarking 3D Human Pose Estimation in the Wild. 2020 Vincent Leroy
Philippe Weinzaepfel
Romain Brégier
Hadrien Combaluzier
Grégory Rogez
+ PDF Chat SMPLy Benchmarking 3D Human Pose Estimation in the Wild 2020 Vincent Leroy
Philippe Weinzaepfel
Romain Brégier
Hadrien Combaluzier
Grégory Rogez
+ SMPLy Benchmarking 3D Human Pose Estimation in the Wild 2020 Vincent Leroy
Philippe Weinzaepfel
Romain Brégier
Hadrien Combaluzier
Grégory Rogez
+ Decoupling Human and Camera Motion from Videos in the Wild 2023 Vickie Ye
Georgios Pavlakos
Jitendra Malik
Angjoo Kanazawa
+ PDF Chat Direct Prediction of 3D Body Poses from Motion Compensated Sequences 2016 Bugra Tekin
Artem Rozantsev
Vincent Lepetit
Pascal Fua
+ Direct Prediction of 3D Body Poses from Motion Compensated Sequences 2015 Bugra Tekin
Artem Rozantsev
Vincent Lepetit
Pascal Fua
+ Self-Attentive 3D Human Pose and Shape Estimation from Videos 2021 Chen YunChun
Marco Piccirilli
Robinson Piramuthu
Ming–Hsuan Yang
+ PDF Chat ReMP: Reusable Motion Prior for Multi-domain 3D Human Pose Estimation and Motion Inbetweening 2024 Ho‐Jun Jang
Young Min Kim
+ TRACE: 5D Temporal Regression of Avatars with Dynamic Cameras in 3D Environments 2023 Yu Sun
Qian Bao
Wu Liu
Tao Mei
Michael J. Black
+ PDF Chat Decoupling Human and Camera Motion from Videos in the Wild 2023 Vickie Ye
Georgios Pavlakos
Jitendra Malik
Angjoo Kanazawa
+ Learning Temporal 3D Human Pose Estimation with Pseudo-Labels 2021 Arij Bouazizi
Ulrich Kreßel
Vasileios Belagiannis
+ PDF Chat Learning Temporal 3D Human Pose Estimation with Pseudo-Labels 2021 Arij Bouazizi
Ulrich Kreßel
Vasileios Belagiannis
+ Scene-Aware 3D Multi-Human Motion Capture from a Single Camera 2023 Diogo Luvizon
Marc Habermann
Vladislav Golyanik
Adam Kortylewski
Christian Theobalt