A Lower Bound on the Average Degree Forcing a Minor

Type: Article

Publication Date: 2020-04-03

Citations: 7

DOI: https://doi.org/10.37236/8847

Abstract

We show that for sufficiently large $d$ and for $t\geq d+1$, there is a graph $G$ with average degree $(1-\varepsilon)\lambda t \sqrt{\ln d}$ such that almost every graph $H$ with $t$ vertices and average degree $d$ is not a minor of $G$, where $\lambda=0.63817\dots$ is an explicitly defined constant. This generalises analogous results for complete graphs by Thomason (2001) and for general dense graphs by Myers and Thomason (2005). It also shows that an upper bound for sparse graphs by Reed and Wood (2016) is best possible up to a constant factor.

Locations

  • The Electronic Journal of Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Forcing a sparse minor 2015 Bruce Reed
David R. Wood
+ PDF Chat Average Degree Conditions Forcing a Minor 2016 Daniel J. Harvey
David R. Wood
+ Average degree conditions forcing a minor 2015 Daniel J. Harvey
David R. Wood
+ Average degree conditions forcing a minor 2015 Daniel J. Harvey
David R. Wood
+ Finding dense minors using average degree 2023 Kevin Hendrey
Sergey Norin
Raphael Steiner
Jérémie Turcotte
+ PDF Chat Graph Minors and Minimum Degree 2010 Gašper Fijavž
David R. Wood
+ Graph Minors and Minimum Degree 2008 Gašper Fijavž
David R. Wood
+ Graph Minors and Minimum Degree 2008 Gašper Fijavž
David R. Wood
+ Small Complete Minors Above the Extremal Edge Density 2012 A. Shapira
Benny Sudakov
+ Small Complete Minors Above the Extremal Edge Density 2012 A. Shapira
Benny Sudakov
+ Complete minors in graphs without sparse cuts 2018 Michael Krivelevich
Rajko Nenadov
+ Complete minors in graphs without sparse cuts 2018 Michael Krivelevich
Rajko Nenadov
+ Complete minors and average degree -- a short proof 2022 Noga Alon
Michael Krivelevich
Benny Sudakov
+ PDF Chat A Linear-Time Algorithm for Finding a Complete Graph Minor in a Dense Graph 2013 Vida Dujmović
Daniel J. Harvey
Gwenaël Joret
Bruce Reed
David R. Wood
+ On the extremal function for graph minors 2019 Andrew Thomason
Matthew Wales
+ Grid Induced Minor Theorem for Graphs of Small Degree 2022 Tuukka Korhonen
+ Grid induced minor theorem for graphs of small degree 2023 Tuukka Korhonen
+ Finding dense minors using average degree 2024 Kevin Hendrey
Sergey Norin
Raphael Steiner
Jérémie Turcotte
+ On <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:math>-minors in graphs with given average degree, II 2012 Alexandr Kostochka
Noah Prince
+ PDF Chat On the number of cliques in graphs with a forbidden minor 2017 Jacob Fox
Fan Wei