3D Local Features for Direct Pairwise Registration

Type: Article

Publication Date: 2019-06-01

Citations: 122

DOI: https://doi.org/10.1109/cvpr.2019.00336

Abstract

We present a novel, data driven approach for solving the problem of registration of two point cloud scans. Our approach is direct in the sense that a single pair of corresponding local patches already provides the necessary transformation cue for the global registration. To achieve that, we first endow the state of the art PPF-FoldNet auto-encoder (AE) with a pose-variant sibling, where the discrepancy between the two leads to pose-specific descriptors. Based upon this, we introduce RelativeNet, a relative pose estimation network to assign correspondence-specific orientations to the keypoints, eliminating any local reference frame computations. Finally, we devise a simple yet effective hypothesize-and-verify algorithm to quickly use the predictions and align two point sets. Our extensive quantitative and qualitative experiments suggests that our approach outperforms the state of the art in challenging real datasets of pairwise registration and that augmenting the keypoints with local pose information leads to better generalization and a dramatic speed-up.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - View

Similar Works

Action Title Year Authors
+ 3D Local Features for Direct Pairwise Registration 2019 Haowen Deng
Tolga Birdal
Ilić Slobodan
+ 3D Local Features for Direct Pairwise Registration 2019 Haowen Deng
Tolga Birdal
Slobodan Ilić
+ PDF Chat Deep-PE: A Learning-Based Pose Evaluator for Point Cloud Registration 2024 Junjie Gao
Chongjian Wang
Zhongjun Ding
Shuangmin Chen
Shiqing Xin
Changhe Tu
Wenping Wang
+ RIGA: Rotation-Invariant and Globally-Aware Descriptors for Point Cloud Registration 2022 Hao Yu
Ji Hou
Zheng Qin
Mahdi Saleh
Ivan Shugurov
Kai Wang
Benjamin Busam
Slobodan Ilić
+ 2D3D-MATR: 2D-3D Matching Transformer for Detection-free Registration between Images and Point Clouds 2023 Minhao Li
Zheng Qin
Zhirui Gao
Renjiao Yi
Chengyang Zhu
Kai Xü
+ PREDATOR: Registration of 3D Point Clouds with Low Overlap 2020 Shengyu Huang
Žan Gojčič
Mikhail Usvyatsov
Andreas Wieser
Konrad Schindler
+ Rotation-Invariant Transformer for Point Cloud Matching 2023 Hao Yu
Zheng Qin
Ji Hou
Mahdi Saleh
Dongsheng Li
Benjamin Busam
Slobodan Ilić
+ PDF Chat REGTR: End-to-end Point Cloud Correspondences with Transformers 2022 Zi Jian Yew
Gim Hee Lee
+ REGTR: End-to-end Point Cloud Correspondences with Transformers 2022 Zi Jian Yew
Gim Hee Lee
+ PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors 2018 Haowen Deng
Tolga Birdal
Slobodan Ilić
+ PPFNet: Global Context Aware Local Features for Robust 3D Point Matching 2018 Haowen Deng
Tolga Birdal
Slobodan Ilić
+ PDF Chat PREDATOR: Registration of 3D Point Clouds with Low Overlap 2021 Shengyu Huang
Žan Gojčič
Mikhail Usvyatsov
Andreas Wieser
Konrad Schindler
+ PDF Chat PPFNet: Global Context Aware Local Features for Robust 3D Point Matching 2018 Haowen Deng
Tolga Birdal
Slobodan Ilić
+ PDF Chat MaFreeI2P: A Matching-Free Image-to-Point Cloud Registration Paradigm with Active Camera Pose Retrieval 2024 Gongxin Yao
Xinyang Li
Yixin Xuan
Yu Pan
+ ImLoveNet: Misaligned Image-supported Registration Network for Low-overlap Point Cloud Pairs 2022 Honghua Chen
Zeyong Wei
Yabin Xu
Mingqiang Wei
Jun Wang
+ PDF Chat ImLoveNet: Misaligned Image-supported Registration Network for Low-overlap Point Cloud Pairs 2022 Honghua Chen
Zeyong Wei
Yabin Xu
Mingqiang Wei
Jun Wang
+ CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration 2021 Hao Yu
Lin Fu
Mahdi Saleh
Benjamin Busam
Slobodan Ilić
+ PDF Chat CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration 2021 Hao Yu
Lin Fu
Mahdi Saleh
Benjamin Busam
Slobodan Ilić
+ PDF Chat BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration 2024 Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Kostas Daniilidis
+ PDF Chat Equivariant Local Reference Frames for Unsupervised Non-rigid Point Cloud Shape Correspondence 2024 Sheng Wang
Runfa Chen
Yikai Wang
Fuchun Sun
Xinzhou Wang
Kai Sun
Guangyuan Fu
Jianwei Zhang
Wenbing Huang

Works That Cite This (57)

Action Title Year Authors
+ End-to-End Learning Local Multi-view Descriptors for 3D Point Clouds 2020 Lei Li
Siyu Zhu
Hongbo Fu
Ping Tan
Chiew‐Lan Tai
+ PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency 2021 Xuyang Bai
Zixin Luo
Lei Zhou
Hongkai Chen
Lei Li
Zeyu Hu
Hongbo Fu
Chiew‐Lan Tai
+ You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors 2021 Haiping Wang
Yuan Liu
Zhen Dong
Wenping Wang
Bisheng Yang
+ PDF Chat Self-supervised Correspondence Estimation via Multiview Registration 2023 Mohamed El Banani
Ignacio Rocco
David Novotný
Andrea Vedaldi
Natalia Neverova
Justin Johnson
Ben Graham
+ PDF Chat Info3D: Representation Learning on 3D Objects Using Mutual Information Maximization and Contrastive Learning 2020 Aditya Sanghi
+ PDF Chat Learning a Task-Specific Descriptor for Robust Matching of 3D Point Clouds 2022 Zhiyuan Zhang
Yuchao Dai
Bin Fan
Jiadai Sun
Mingyi He
+ PDF Chat PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency 2021 Xuyang Bai
Zixin Luo
Lei Zhou
Hongkai Chen
Lei Li
Zeyu Hu
Hongbo Fu
Chiew‐Lan Tai
+ PDF Chat 3DRegNet: A Deep Neural Network for 3D Point Registration 2020 G. Dias Pais
Srikumar Ramalingam
Venu Madhav Govindu
Jacinto C. Nascimento
Rama Chellappa
Pedro Miraldo
+ PointNetLK Revisited 2020 Xue-Qian Li
Jhony Kaesemodel Pontes
Simon Lucey
+ Extending DeepSDF for automatic 3D shape retrieval and similarity transform estimation 2020 Oladapo Afolabi
Allen Y. Yang
S. Shankar Sastry