Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Provably Robust Blackbox Optimization for Reinforcement Learning
Krzysztof Choromański
,
Aldo Pacchiano
,
Jack Parker-Holder
,
Yunhao Tang
,
Deepali Jain
,
Yuxiang Yang
,
Atıl Işçen
,
Jasmine Hsu
,
Vikas Sindhwani
Type:
Preprint
Publication Date:
2019-03-07
Citations:
7
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Provably Robust Blackbox Optimization for Reinforcement Learning
2019
Krzysztof Choromański
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
Deepali Jain
Yuxiang Yang
Atıl Işçen
Jasmine Hsu
Vikas Sindhwani
+
Wasserstein Robust Reinforcement Learning
2019
Mohammed Amin Abdullah
Hang Ren
Haitham Bou Ammar
Vladimir Milenković
Rui Luo
Ming‐Tian Zhang
Jun Wang
+
Action Robust Reinforcement Learning and Applications in Continuous Control
2019
Chen Tessler
Yonathan Efroni
Shie Mannor
+
Robust Reinforcement Learning via Adversarial training with Langevin Dynamics
2020
Parameswaran Kamalaruban
Yu‐Ting Huang
Ya-Ping Hsieh
Paul Rolland
Cheng Shi
Volkan Cevher
+
Policy Gradient Bayesian Robust Optimization for Imitation Learning
2021
Zaynah Javed
Daniel S. Brown
Satvik Sharma
Junwei Zhu
Ashwin Balakrishna
Marek Petrik
Anca D. Dragan
Ken Goldberg
+
PDF
Chat
Black-box data-efficient policy search for robotics
2017
Konstantinos Chatzilygeroudis
Roberto Rama
Rituraj Kaushik
Dorian Goepp
Vassilis Vassiliades
Jean-Baptiste Mouret
+
Black-Box Data-efficient Policy Search for Robotics
2017
Konstantinos Chatzilygeroudis
Roberto Rama
Rituraj Kaushik
Dorian Goepp
Vassilis Vassiliades
Jean-Baptiste Mouret
+
Black-Box Data-efficient Policy Search for Robotics
2017
Konstantinos Chatzilygeroudis
Roberto Rama
Rituraj Kaushik
Dorian Goepp
Vassilis Vassiliades
Jean-Baptiste Mouret
+
Overcoming Model Bias for Robust Offline Deep Reinforcement Learning
2020
Phillip Swazinna
Steffen Udluft
Thomas A. Runkler
+
Regret-Aware Black-Box Optimization with Natural Gradients, Trust-Regions and Entropy Control
2022
Maximilian Hüttenrauch
Gerhard Neumann
+
Overcoming Model Bias for Robust Offline Deep Reinforcement Learning.
2020
Phillip Swazinna
Steffen Udluft
Thomas A. Runkler
+
Robust Adversarial Reinforcement Learning via Bounded Rationality Curricula
2023
Aryaman Reddi
Maximilian Tölle
Jan Peters
Georgia Chalvatzaki
Carlo D’Eramo
+
Soft Actor-Critic Algorithms and Applications
2018
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
Jie Tan
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
+
Provably Convergent Policy Optimization via Metric-aware Trust Region Methods
2023
Jun Ho Song
Niao He
Lijun Ding
Chaoyue Zhao
+
PDF
Chat
Proximal Reliability Optimization for Reinforcement Learning
2020
Narendra Patwardhan
+
Robust Reinforcement Learning for Continuous Control with Model Misspecification
2020
Daniel J. Mankowitz
Nir Levine
Rae Jeong
Abbas Abdolmaleki
Jost Tobias Springenberg
Yuanyuan Shi
Jackie Kay
Todd Hester
Timothy Mann
Martin Riedmiller
+
Leveraging Reward Gradients For Reinforcement Learning in Differentiable Physics Simulations
2022
Sean Gillen
Katie Byl
+
Proximal Reliability Optimization for Reinforcement Learning
2019
Narendra Patwardhan
Zequn Wang
+
Robust Reinforcement Learning for Continuous Control with Model Misspecification
2019
Daniel J. Mankowitz
Nir Levine
Rae Jeong
Yuanyuan Shi
Jackie Kay
Abbas Abdolmaleki
Jost Tobias Springenberg
Timothy Mann
Todd Hester
Martin Riedmiller
+
Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and Benchmarking
2022
Hanna Krasowski
Jakob Thumm
Marlon Müller
Xiao Wang
Matthias Althoff
Works That Cite This (6)
Action
Title
Year
Authors
+
Structured Monte Carlo Sampling for Nonisotropic Distributions via Determinantal Point Processes
2019
Krzysztof Choromański
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
+
PDF
Chat
Accelerating reinforcement learning with a Directional-Gaussian-Smoothing evolution strategy
2021
Jiaxin Zhang
Hoang Tran
Guannan Zhang
+
A Scalable Evolution Strategy with Directional Gaussian Smoothing for Blackbox Optimization.
2020
Jiaxin Zhang
Hoang Tran
Dan Lu
Guannan Zhang
+
Accelerating Reinforcement Learning with a Directional-Gaussian-Smoothing Evolution Strategy
2020
Jiaxing Zhang
Hoang Tran
Guannan Zhang
+
CoNES: Convex Natural Evolutionary Strategies
2020
Sushant Veer
Anirudha Majumdar
+
qiBullet, a Bullet-based simulator for the Pepper and NAO robots.
2019
Maxime Busy
Maxime Caniot
Works Cited by This (16)
Action
Title
Year
Authors
+
Introduction to Derivative-Free Optimization
2009
Andrew R. Conn
Katya Scheinberg
L. N. Vicente
+
PDF
Chat
Decoding by Linear Programming
2005
Emmanuel J. Candès
Terence Tao
+
Random Gradient-Free Minimization of Convex Functions
2015
Yurii Nesterov
Vladimir Spokoiny
+
PDF
Chat
Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods
2003
Tamara G. Kolda
Robert Michael Lewis
Virginia Torczon
+
Continuous control with deep reinforcement learning
2015
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
+
PDF
Chat
Introduction to Online Convex Optimization
2016
Elad Hazan
+
Sharper Bounds for Regression and Low-Rank Approximation with Regularization.
2016
Haim Avron
Kenneth L. Clarkson
David P. Woodruff
+
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
2017
Tim Salimans
Jonathan Ho
Xi Chen
Ilya Sutskever
+
Proximal Policy Optimization Algorithms
2017
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
+
Simple random search provides a competitive approach to reinforcement learning
2018
Horia Mania
Aurelia Guy
Benjamin Recht