Provably Robust Blackbox Optimization for Reinforcement Learning

Type: Preprint

Publication Date: 2019-03-07

Citations: 7

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Provably Robust Blackbox Optimization for Reinforcement Learning 2019 Krzysztof Choromański
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
Deepali Jain
Yuxiang Yang
Atıl Işçen
Jasmine Hsu
Vikas Sindhwani
+ Wasserstein Robust Reinforcement Learning 2019 Mohammed Amin Abdullah
Hang Ren
Haitham Bou Ammar
Vladimir Milenković
Rui Luo
Ming‐Tian Zhang
Jun Wang
+ Action Robust Reinforcement Learning and Applications in Continuous Control 2019 Chen Tessler
Yonathan Efroni
Shie Mannor
+ Robust Reinforcement Learning via Adversarial training with Langevin Dynamics 2020 Parameswaran Kamalaruban
Yu‐Ting Huang
Ya-Ping Hsieh
Paul Rolland
Cheng Shi
Volkan Cevher
+ Policy Gradient Bayesian Robust Optimization for Imitation Learning 2021 Zaynah Javed
Daniel S. Brown
Satvik Sharma
Junwei Zhu
Ashwin Balakrishna
Marek Petrik
Anca D. Dragan
Ken Goldberg
+ PDF Chat Black-box data-efficient policy search for robotics 2017 Konstantinos Chatzilygeroudis
Roberto Rama
Rituraj Kaushik
Dorian Goepp
Vassilis Vassiliades
Jean-Baptiste Mouret
+ Black-Box Data-efficient Policy Search for Robotics 2017 Konstantinos Chatzilygeroudis
Roberto Rama
Rituraj Kaushik
Dorian Goepp
Vassilis Vassiliades
Jean-Baptiste Mouret
+ Black-Box Data-efficient Policy Search for Robotics 2017 Konstantinos Chatzilygeroudis
Roberto Rama
Rituraj Kaushik
Dorian Goepp
Vassilis Vassiliades
Jean-Baptiste Mouret
+ Overcoming Model Bias for Robust Offline Deep Reinforcement Learning 2020 Phillip Swazinna
Steffen Udluft
Thomas A. Runkler
+ Regret-Aware Black-Box Optimization with Natural Gradients, Trust-Regions and Entropy Control 2022 Maximilian Hüttenrauch
Gerhard Neumann
+ Overcoming Model Bias for Robust Offline Deep Reinforcement Learning. 2020 Phillip Swazinna
Steffen Udluft
Thomas A. Runkler
+ Robust Adversarial Reinforcement Learning via Bounded Rationality Curricula 2023 Aryaman Reddi
Maximilian Tölle
Jan Peters
Georgia Chalvatzaki
Carlo D’Eramo
+ Soft Actor-Critic Algorithms and Applications 2018 Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
Jie Tan
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
+ Provably Convergent Policy Optimization via Metric-aware Trust Region Methods 2023 Jun Ho Song
Niao He
Lijun Ding
Chaoyue Zhao
+ PDF Chat Proximal Reliability Optimization for Reinforcement Learning 2020 Narendra Patwardhan
+ Robust Reinforcement Learning for Continuous Control with Model Misspecification 2020 Daniel J. Mankowitz
Nir Levine
Rae Jeong
Abbas Abdolmaleki
Jost Tobias Springenberg
Yuanyuan Shi
Jackie Kay
Todd Hester
Timothy Mann
Martin Riedmiller
+ Leveraging Reward Gradients For Reinforcement Learning in Differentiable Physics Simulations 2022 Sean Gillen
Katie Byl
+ Proximal Reliability Optimization for Reinforcement Learning 2019 Narendra Patwardhan
Zequn Wang
+ Robust Reinforcement Learning for Continuous Control with Model Misspecification 2019 Daniel J. Mankowitz
Nir Levine
Rae Jeong
Yuanyuan Shi
Jackie Kay
Abbas Abdolmaleki
Jost Tobias Springenberg
Timothy Mann
Todd Hester
Martin Riedmiller
+ Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and Benchmarking 2022 Hanna Krasowski
Jakob Thumm
Marlon Müller
Xiao Wang
Matthias Althoff