Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Benefits of Overparameterization in Single-Layer Latent Variable Generative Models.
Rares-Darius Buhai
,
Andrej Risteski
,
Yoni Halpern
,
David Sontag
Type:
Article
Publication Date:
2019-06-28
Citations:
4
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models
2019
Rares-Darius Buhai
Yoni Halpern
Yoon Kim
Andrej Risteski
David Sontag
+
PDF
Chat
Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference
2020
Erik Nijkamp
Bo Pang
Tian Han
Linqi Zhou
SongâChun Zhu
Ying Wu
+
PDF
Chat
Generative Models for Deep Learning with Very Scarce Data
2019
Juan Maroñas
Roberto Paredes
Daniel Ramos
+
Layer-wise learning of deep generative models
2012
Ludovic Arnold
Yann Ollivier
+
PDF
Chat
Non-exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks
2021
Jun Zhuang
Mohammad Al Hasan
+
Deep Generative Models with Stick-Breaking Priors
2016
Eric Nalisnick
Padhraic Smyth
+
Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models
2019
JinâChuan Duan
AndrĂĄs FĂŒlöp
YuâWei Hsieh
+
Improving Training of Likelihood-based Generative Models with Gaussian Homotopy
2023
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
+
Efficient Estimation with Latent Variables
2019
Michael Bedard
+
Effective Estimation of Deep Generative Language Models
2019
Tom Pelsmaeker
Wilker Aziz
+
PDF
Chat
Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
2013
Elena Ehrlich
Ajay Jasra
Nikolas Kantas
+
Slow mixing for Latent Dirichlet Allocation
2017
Johan Jonasson
+
Training Latent Variable Models with Auto-encoding Variational Bayes: A Tutorial
2022
Yang Zhi-Han
+
Improving latent variable descriptiveness with AutoGen
2018
Alex Mansbridge
Roberto Fierimonte
Ilya Feige
David Barber
+
PDF
Chat
Private Gradient Estimation is Useful for Generative Modeling
2024
Bochao Liu
Pengju Wang
Weijia Guo
Li Yong
Liansheng Zhuang
Weiping Wang
Shiming Ge
+
Encoding Binary Concepts in the Latent Space of Generative Models for Enhancing Data Representation
2023
Zizhao Hu
Mohammad Rostami
+
Rate-Distortion Optimization Guided Autoencoder for Generative Approach with quantitatively measurable latent space.
2019
Keizo Kato
Jing Zhou
Akira Nakagawa
+
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
2020
Yuling Yao
Aki Vehtari
Andrew Gelman
+
PDF
Chat
Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders
2024
Yaniv Yacoby
Weiwei Pan
Finale DoshiâVelez
+
Importance Weighted Autoencoders
2015
Yuri Burda
Roger Grosse
Ruslan Salakhutdinov
Works That Cite This (2)
Action
Title
Year
Authors
+
Structures of Spurious Local Minima in $k$-means
2020
Wei Qian
Yuqian Zhang
Yudong Chen
+
Benefits of Jointly Training Autoencoders: An Improved Neural Tangent Kernel Analysis.
2019
Thanh V. Nguyen
Raymond Chi-Wing Wong
Chinmay Hegde
Works Cited by This (0)
Action
Title
Year
Authors