Benefits of Overparameterization in Single-Layer Latent Variable Generative Models.

Type: Article

Publication Date: 2019-06-28

Citations: 4

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models 2019 Rares-Darius Buhai
Yoni Halpern
Yoon Kim
Andrej Risteski
David Sontag
+ PDF Chat Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference 2020 Erik Nijkamp
Bo Pang
Tian Han
Linqi Zhou
Song‐Chun Zhu
Ying Wu
+ PDF Chat Generative Models for Deep Learning with Very Scarce Data 2019 Juan Maroñas
Roberto Paredes
Daniel Ramos
+ Layer-wise learning of deep generative models 2012 Ludovic Arnold
Yann Ollivier
+ PDF Chat Non-exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks 2021 Jun Zhuang
Mohammad Al Hasan
+ Deep Generative Models with Stick-Breaking Priors 2016 Eric Nalisnick
Padhraic Smyth
+ Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models 2019 Jin‐Chuan Duan
AndrĂĄs FĂŒlöp
Yu‐Wei Hsieh
+ Improving Training of Likelihood-based Generative Models with Gaussian Homotopy 2023 Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
+ Efficient Estimation with Latent Variables 2019 Michael Bedard
+ Effective Estimation of Deep Generative Language Models 2019 Tom Pelsmaeker
Wilker Aziz
+ PDF Chat Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods 2013 Elena Ehrlich
Ajay Jasra
Nikolas Kantas
+ Slow mixing for Latent Dirichlet Allocation 2017 Johan Jonasson
+ Training Latent Variable Models with Auto-encoding Variational Bayes: A Tutorial 2022 Yang Zhi-Han
+ Improving latent variable descriptiveness with AutoGen 2018 Alex Mansbridge
Roberto Fierimonte
Ilya Feige
David Barber
+ PDF Chat Private Gradient Estimation is Useful for Generative Modeling 2024 Bochao Liu
Pengju Wang
Weijia Guo
Li Yong
Liansheng Zhuang
Weiping Wang
Shiming Ge
+ Encoding Binary Concepts in the Latent Space of Generative Models for Enhancing Data Representation 2023 Zizhao Hu
Mohammad Rostami
+ Rate-Distortion Optimization Guided Autoencoder for Generative Approach with quantitatively measurable latent space. 2019 Keizo Kato
Jing Zhou
Akira Nakagawa
+ Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors 2020 Yuling Yao
Aki Vehtari
Andrew Gelman
+ PDF Chat Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders 2024 Yaniv Yacoby
Weiwei Pan
Finale Doshi‐Velez
+ Importance Weighted Autoencoders 2015 Yuri Burda
Roger Grosse
Ruslan Salakhutdinov

Works Cited by This (0)

Action Title Year Authors