Scaling Neural Network Performance through Customized Hardware Architectures on Reconfigurable Logic

Type: Preprint

Publication Date: 2018-06-26

Citations: 1

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Scaling Neural Network Performance through Customized Hardware Architectures on Reconfigurable Logic 2018 Michaela Blott
Thomas B. Preußer
Nicholas C. Fraser
Giulio Gambardella
Kenneth M. O'Brien
Yaman Umuroglu
Miriam Leeser
+ PDF Chat Scaling Neural Network Performance through Customized Hardware Architectures on Reconfigurable Logic 2017 Michaela Blott
Thomas B. Preuber
Nicholas J. Fraser
Giulio Gambardella
Kenneth M. O'Brien
Yaman Umuroglu
Miriam Leeser
+ Scaling Binarized Neural Networks on Reconfigurable Logic 2017 Nicholas J. Fraser
Yaman Umuroglu
Giulio Gambardella
Michaela Blott
Philip H. W. Leong
Magnus Jahre
Kees Vissers
+ PDF Chat Scaling Binarized Neural Networks on Reconfigurable Logic 2017 Nicholas J. Fraser
Yaman Umuroglu
Giulio Gambardella
Michaela Blott
Philip H. W. Leong
Magnus Jahre
Kees Vissers
+ Exploration of Low Numeric Precision Deep Learning Inference Using Intel FPGAs 2018 Philip Colangelo
Nasibeh Nasiri
Asit K. Mishra
Eriko Nurvitadhi
Martin Margala
Kevin Nealis
+ Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural Networks 2017 Hokchhay Tann
Soheil Hashemi
R. Iris Bahar
Sherief Reda
+ Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural Networks 2017 Hokchhay Tann
Soheil Hashemi
Iris Bahar
Sherief Reda
+ PDF Chat Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural Networks 2017 Hokchhay Tann
Soheil Hashemi
R. Iris Bahar
Sherief Reda
+ PDF Chat AddNet: Deep Neural Networks Using FPGA-Optimized Multipliers 2019 Julian Faraone
Martin Kumm
Martin Hardieck
Peter Zipf
Xueyuan Liu
David Boland
Philip H. W. Leong
+ Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 2023 Stylianos I. Venieris
Javier Fernández-Marqués
Nicholas D. Lane
+ PDF Chat Ax-BxP: Approximate Blocked Computation for Precision-reconfigurable Deep Neural Network Acceleration 2022 R. Elangovan
Shubham Jain
Anand Raghunathan
+ Ax-BxP: Approximate Blocked Computation for Precision-Reconfigurable Deep Neural Network Acceleration 2020 R. Elangovan
Shubham Jain
Anand Raghunathan
+ Accuracy to Throughput Trade-offs for Reduced Precision Neural Networks on Reconfigurable Logic 2018 Su Jiang
Nicholas J. Fraser
Giulio Gambardella
Michaela Blott
Gianluca Durelli
David B. Thomas
Philip H. W. Leong
Peter Y. K. Cheung
+ PDF Chat LUTNet: Learning FPGA Configurations for Highly Efficient Neural Network Inference 2020 Erwei Wang
James J. Davis
Peter Y. K. Cheung
George A. Constantinides
+ Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 2023 Stylianos I. Venieris
Javier Fernández-Marqués
Nicholas D. Lane
+ FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with Fractional Activations 2020 Yichi Zhang
Junhao Pan
Xinheng Liu
Hongzheng Chen
Deming Chen
Zhiru Zhang
+ PDF Chat FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with Fractional Activations 2020 Yichi Zhang
Junhao Pan
Xinheng Liu
Hongzheng Chen
Deming Chen
Zhiru Zhang
+ FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with Fractional Activations 2020 Yichi Zhang
Junhao Pan
Xinheng Liu
Hongzheng Chen
Deming Chen
Zhiru Zhang
+ PDF Chat Streaming Architecture for Large-Scale Quantized Neural Networks on an FPGA-Based Dataflow Platform 2018 Chaim Baskin
Natan Liss
Evgenii Zheltonozhskii
Alex Bronstein
Avi Mendelson
+ PDF Chat LUTMUL: Exceed Conventional FPGA Roofline Limit by LUT-based Efficient Multiplication for Neural Network Inference 2024 Yanyue Xie
Zhengang Li
Dana Diaconu
Suranga Handagala
Miriam Leeser
Xue Lin

Works That Cite This (0)

Action Title Year Authors