An algorithmic version of the blow‐up lemma

Type: Article

Publication Date: 1998-05-01

Citations: 4

DOI: https://doi.org/10.1002/(sici)1098-2418(199805)12:3<297::aid-rsa5>3.3.co;2-w

Abstract

Recently we have developed a new method in graph theory based on the Regularity Lemma.The method is applied to find certain spanning subgraphs in dense graphs.The other main general tool of the method, beside the Regularity Lemma, is the so-called Blow-up Lemma ([24]).This lemma helps to find bounded degree spanning subgraphs in ε-regular graphs.Our original proof of the lemma is not algorithmic, it applies probabilistic methods.In this paper we provide an algorithmic version of the Blow-up Lemma.The desired subgraph, for an n-vertex graph, can be found in time O(nM (n)), where M (n) = O(n 2.376 ) is the time needed to multiply two n by n matrices with 0,1 entries over the integers.We show that the algorithm can be parallelized and implemented in N C 5 .

Locations

  • arXiv (Cornell University) - View - PDF
  • Random Structures and Algorithms - View

Similar Works

Action Title Year Authors
+ An Algorithmic Version of the Blow-up Lemma 1996 János Komlós
Gábor N. Sárközy
Endre Szemerédi
+ An algorithmic version of the blow-up lemma 1998 János Komlós
Gábor N. Sárközy
Endre Szemerédi
+ Blow-up lemmas for sparse graphs 2016 Peter Allen
Julia Böttcher
Hiệp Hàn
Yoshiharu Kohayakawa
Yury Person
+ The Blow-up Lemma 1999 KomlósJános
+ The Blow-up Lemma 2001 János Komlós
+ The Blow-up Lemma 1999 János Komlós
+ Deterministic Small Vertex Connectivity in Almost Linear Time 2022 Thatchaphol Saranurak
Sorrachai Yingchareonthawornchai
+ Blow-up lemma for cycles in sparse random graphs 2021 Miloš Trujić
+ Blow-up lemma for cycles in sparse random graphs 2021 Miloš Trujić
+ PDF Chat Blow-up lemma for cycles in sparse random graphs 2021 Miloš Trujić
+ PDF Chat Deterministic Small Vertex Connectivity in Almost Linear Time 2022 Thatchaphol Saranurak
Sorrachai Yingchareonthawornchai
+ On a simple randomized algorithm for finding a 2-factor in sparse graphs 2005 Gopal Pandurangan
+ PDF Chat A hypergraph blow‐up lemma 2011 Peter Keevash
+ PDF Chat The Bandwidth Theorem in sparse graphs 2020 Peter Allen
Julia Böttcher
Julia Ehrenmüller
Anusch Taraz
+ A hypergraph blow-up lemma 2010 Peter Keevash
+ A hypergraph blow-up lemma 2010 Peter Keevash
+ PDF Chat On a degree sequence analogue of Pósa's conjecture 2015 Katherine Staden
Andrew Treglown
+ A blow-up lemma for approximate decompositions 2017 Jaehoon Kim
Daniela Kühn
Deryk Osthus
Mykhaylo Tyomkyn
+ Exact Counts of $C_{4}$s in Blow-Up Graphs 2022 S. Y. Chan
Kerri Morgan
J. Ugon
+ PDF Chat The codegree Tur\'an density of $3$-uniform tight cycles 2024 Simón Piga
Nicolás Sanhueza-Matamala
Mathias Schacht