Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

Type: Preprint

Publication Date: 2004-01-01

Citations: 60

DOI: https://doi.org/10.48550/arxiv.math/0410542

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? 2006 Emmanuel J. Candès
Terence Tao
+ Practical Signal Recovery from Random Projections 2005 Justin Romberg
+ Do log factors matter? On optimal wavelet approximation and the foundations of compressed sensing 2019 Ben Adcock
Simone Brugiapaglia
Matthew King–Roskamp
+ Modern Problems in Mathematical Signal Processing: Quantized Compressed Sensing and Randomized Neural Networks 2019 Aaron A. Nelson
+ PDF Encoding the \ell_p Ball from Limited Measurements 2006 Emmanuel J. Candès
Justin Romberg
+ From compression to compressed sensing 2012 Shirin Jalali
Arian Maleki
+ From compression to compressed sensing 2012 Shirin Jalali
Arian Maleki
+ PDF Lossless linear analog compression 2016 Giovanni Alberti
Helmut Bölcskei
Camillo De Lellis
Günther Koliander
Erwin Riegler
+ PDF Chat From compression to compressed sensing 2013 Shirin Jalali
Arian Maleki
+ On Exact and Robust Recovery for Plug-and-Play Compressed Sensing 2022 Ruturaj G. Gavaskar
Chirayu D. Athalye
Kunal N. Chaudhury
+ The quest for optimal sampling: Computationally efficient, structure-exploiting measurements for compressed sensing 2014 Ben Adcock
Anders C. Hansen
Bogdan Roman
+ Flavors of Compressive Sensing 2017 Simon Foucart
+ Sparse recovery using the preservability of the null space property under random measurements. 2017 Peter G. Casazza
Xuemei Chen
Richard G. Lynch
+ Universality in Learning from Linear Measurements 2019 Ehsan Abbasi
Fariborz Salehi
Babak Hassibi
+ PDF Chat The Quest for Optimal Sampling: Computationally Efficient, Structure-Exploiting Measurements for Compressed Sensing 2015 Ben Adcock
Anders C. Hansen
Bogdan Roman
+ Lossless Linear Analog Compression 2016 Giovanni Alberti
Helmut Bölcskei
Camillo De Lellis
Günther Koliander
Erwin Riegler
+ Lossless Linear Analog Compression 2016 Giovanni Alberti
Helmut Bölcskei
Camillo De Lellis
Günther Koliander
Erwin Riegler
+ Superset Technique for Approximate Recovery in One-Bit Compressed Sensing 2019 Larkin Flodin
Venkata Gandikota
Arya Mazumdar
+ Recovery From Linear Measurements With Complexity-Matching Universal Signal Estimation 2015 Junan Zhu
Dror Baron
Marco F. Duarte
+ Recovery from Linear Measurements with Complexity-Matching Universal Signal Estimation 2012 Junan Zhu
Dror Baron
Marco F. Duarte