Scaling dimensions in QED3 from the ϵ-expansion

Type: Article

Publication Date: 2017-12-01

Citations: 32

DOI: https://doi.org/10.1007/jhep12(2017)054

Abstract

We study the fixed point that controls the IR dynamics of QED in d = 4 − 2ϵ dimensions. We derive the scaling dimensions of four-fermion and bilinear operators beyond leading order in the ϵ-expansion. For the four-fermion operators, this requires the computation of a two-loop mixing that was not known before. We then extrapolate these scaling dimensions to d = 3 to estimate their value at the IR fixed point of QED3 as function of the number of fermions N f . The next-to-leading order result for the four-fermion operators corrects significantly the leading one. Our best estimate at this order indicates that they do not cross marginality for any value of N f , which would imply that they cannot trigger a departure from the conformal phase. For the scaling dimensions of bilinear operators, we observe better convergence as we increase the order. In particular, the ϵ-expansion provides a convincing estimate for the dimension of the flavor-singlet scalar in the full range of N f .

Locations

  • Journal of High Energy Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • ArTS Archivio della ricerca di Trieste (University of Trieste https://www.units.it/) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • ArTS Archivio della ricerca di Trieste (University of Trieste https://www.units.it/) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ THE ∈-EXPANSION FOR QED 2016 Lorenzo Di Pietro
Zohar Komargodski
Itamar Shamir
Emmanuel Stamou
+ PDF Chat Operator mixing in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ε</mml:mi></mml:math> -expansion: Scheme and evanescent-operator independence 2018 Lorenzo Di Pietro
Emmanuel Stamou
+ PDF Chat Renormalization of high-energy Lorentz-violating QED 2010 Damiano Anselmi
Martina Taiuti
+ PDF Chat Bootstrapping <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi>f</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:math> conformal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>QED</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2022 Soner Albayrak
Rajeev S. Erramilli
Zhijin Li
David Poland
Y. L. Xin
+ PDF Chat Critical Properties of Three-Dimensional Many-Flavor QEDs 2023 S. Metayer
S. Teber
+ PDF Chat Testing logarithmic violations to scaling in strongly coupled QED 1996 V. Azcoiti
G. Di Carlo
Angelo Galante
A. F. Grillo
Víctor Laliena
C.E. Piedrafita
+ More on the cubic versus quartic interaction equivalence in the $O(N)$ model 2021 Oleg Antipin
Jahmall Bersini
Francesco Sannino
Zhi-Wei Wang
Chen Zhang
+ Eliminating leading corrections to scaling in the three dimensional /gf4 theory 2000 Martin Hasenbusch
Tibor Török
+ PDF Chat ϕ 3 theory with F4 flavor symmetry in 6 − 2ϵ dimensions: 3-loop renormalization and conformal bootstrap 2016 Yi Pang
Junchen Rong
Ning Su
+ PDF Chat Towards bootstrapping QED3 2016 Shai M. Chester
Silviu S. Pufu
+ Conformality and self-duality of N = 2 QED3 2022 Zhijin Li
+ PDF Chat Quantum Electrodynamics in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math>from the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ε</mml:mi></mml:math>Expansion 2016 Lorenzo Di Pietro
Zohar Komargodski
Itamar Shamir
Emmanuel Stamou
+ PDF Chat Phase structure of many-flavor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>QED</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2014 Jens Braun
Holger Gies
Lukas Janssen
Dietrich Roscher
+ PDF Chat Anomalous dimensions of scalar operators in QED3 2016 Shai M. Chester
Silviu S. Pufu
+ PDF Chat Scaling dimensions at large charge for cubic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> theory in six dimensions 2022 I. Jack
D.R.T. Jones
+ PDF Chat More on the cubic versus quartic interaction equivalence in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> model 2021 Oleg Antipin
Jahmall Bersini
Francesco Sannino
Zhi-Wei Wang
Chen Zhang
+ PDF Chat at the next-to-leading order in QCD and QED 1993 M. Ciuchini
E. Franco
G. Martinelli
Laura Reina
+ Infrared anomalous dimensions at three-loop in the SM from conserved currents 2025 Michael Stadlbauer
Tobias Theil
+ Renormalization in tensor field theory and the melonic fixed point 2022 Sabine Harribey
+ One-loop non-renormalization results in EFTs 2015 Joan Elias Miró
J. R. Espinosa
Alex Pomarol

Works That Cite This (30)

Action Title Year Authors
+ PDF Chat Renormalization group analysis of phase transitions in the two-dimensional Majorana-Hubbard model 2018 Kyle Wamer
Ian Affleck
+ PDF Chat Phases of $$ \mathcal{N}=1 $$ theories in 2 + 1 dimensions 2018 Vladimir Bashmakov
Jaume Gomis
Zohar Komargodski
Adar Sharon
+ PDF Chat Unifying description of competing orders in two-dimensional quantum magnets 2019 Xue-Yang Song
Chong Wang
Ashvin Vishwanath
Yin-Chen He
+ PDF Chat Operator mixing in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ε</mml:mi></mml:math> -expansion: Scheme and evanescent-operator independence 2018 Lorenzo Di Pietro
Emmanuel Stamou
+ PDF Chat Quantum Electrodynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> Dimensions as the Organizing Principle of a Triangular Lattice Antiferromagnet 2024 Alexander Wietek
Sylvain Capponi
Andreas M. Läuchli
+ PDF Chat Noncommutativity between the low-energy limit and integer dimension limits in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ε</mml:mi></mml:math> expansion: A case study of the antiferromagnetic quantum critical metal 2018 Andrés Schlief
Peter Lunts
Sung-Sik Lee
+ PDF Chat 3d Abelian gauge theories at the boundary 2019 Lorenzo Di Pietro
Davide Gaiotto
Edoardo Lauria
Jingxiang Wu
+ Pauli-Term-Induced Fixed Points in $d$-dimensional QED 2022 Holger Gies
Kevin K. K. Tam
Jobst Ziebell
+ PDF Chat Easy-plane QED3’s in the large Nf limit 2019 Sergio Benvenuti
Hrachya Khachatryan
+ PDF Chat Bootstrapping <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi>f</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:math> conformal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>QED</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2022 Soner Albayrak
Rajeev S. Erramilli
Zhijin Li
David Poland
Y. L. Xin

Works Cited by This (78)

Action Title Year Authors
+ PDF Chat Phase structure of many-flavor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>QED</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2014 Jens Braun
Holger Gies
Lukas Janssen
Dietrich Roscher
+ PDF Chat Erratum: Algebraic spin liquid as the mother of many competing orders [Phys. Rev. B<b>72</b>, 104404 (2005)] 2007 Michael Hermele
T. Senthil
Matthew P. A. Fisher
+ PDF Chat Three loop tensor current anomalous dimension in QCD 2000 J. A. Gracey
+ Monopole Taxonomy in Three-Dimensional Conformal Field Theories 2013 Ethan Dyer
Márk Mezei
Silviu S. Pufu
+ Conformal QED$_d$, $F$-Theorem and the $\epsilon$ Expansion 2015 Simone Giombi
Igor R. Klebanov
Grigory Tarnopolsky
+ PDF Chat Quantum Electrodynamics in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math>from the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ε</mml:mi></mml:math>Expansion 2016 Lorenzo Di Pietro
Zohar Komargodski
Itamar Shamir
Emmanuel Stamou
+ PDF Chat FORM version 4.0 2013 J. Kuipers
Takahiro Ueda
J. A. M. Vermaseren
J. Vollinga
+ PDF Chat Spin correlations in the algebraic spin liquid: Implications for high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>superconductors 2002 Walter Rantner
Xiao-Gang Wen
+ PDF Chat Renormalization group studies on four-fermion interaction instabilities on algebraic spin liquids 2008 Cenke Xu
+ Critical Exponents in 3.99 Dimensions 1972 Kenneth G. Wilson
Michael E. Fisher