A Reliable Effective Terascale Linear Learning System

Type: Preprint

Publication Date: 2011-10-19

Citations: 54

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ A Reliable Effective Terascale Linear Learning System 2011 Alekh Agarwal
Olivier Chapelle
Miroslav Dudı́k
John Langford
+ Snap ML: A Hierarchical Framework for Machine Learning 2018 Celestine Dünner
T. A. Parnell
Dimitrios Sarigiannis
Nikolas Ioannou
Andreea Anghel
Gummadi Ravi
Madhusudanan Kandasamy
Haralampos Pozidis
+ Snap ML: A Hierarchical Framework for Machine Learning 2018 Celestine Dünner
Thomas Parnell
Dimitrios Sarigiannis
Nikolas Ioannou
Andreea Anghel
Gummadi Ravi
Madhusudanan Kandasamy
Haralampos Pozidis
+ Snap ML: A Hierarchical Framework for Machine Learning 2018 Celestine Dünner
Thomas Parnell
Dimitrios Sarigiannis
Nikolas Ioannou
Andreea Anghel
Gummadi Ravi
Madhusudanan Kandasamy
Haralampos Pozidis
+ Jensen: An Easily-Extensible C++ Toolkit for Production-Level Machine Learning and Convex Optimization 2018 Rishabh Iyer
John T. Halloran
Kai Wei
+ PDF Chat Efficient and Numerically Stable Sparse Learning 2010 Sihong Xie
Wei Fan
Olivier Verscheure
Jiangtao Ren
+ A scalable modular convex solver for regularized risk minimization 2007 Choon Hui Teo
Alex Smola
S. V. N. Vishwanathan
Quoc V. Le
+ Coresets for Data-efficient Training of Machine Learning Models 2019 Baharan Mirzasoleiman
Jeff Bilmes
Jure Leskovec
+ Coresets for Data-efficient Training of Machine Learning Models 2019 Baharan Mirzasoleiman
Jeff Bilmes
Jure Leskovec
+ PDF Chat Compute Trends Across Three Eras of Machine Learning 2022 Jaime Sevilla
Lennart Heim
Anson Ho
Tamay Besiroglu
Marius Hobbhahn
P. Moreno
+ Efficient Use of Limited-Memory Resources to Accelerate Linear Learning. 2017 Celestine Dünner
Thomas Parnell
Martin Jaggi
+ Small-Data, Large-Scale Linear Optimization 2018 Vishal Gupta
+ Benchopt: Reproducible, efficient and collaborative optimization benchmarks 2022 Thomas Moreau
Mathurin Massias
Alexandre Gramfort
Pierre Ablin
Pierre‐Antoine Bannier
Benjamin Charlier
Mathieu Dagréou
Tom Dupré la Tour
Ghislain Durif
Cássio F. Dantas
+ Parallel training of linear models without compromising convergence 2018 Nikolas Ioannou
Celestine Dünner
Kornilios Kourtis
Thomas Parnell
+ Compute Trends Across Three Eras of Machine Learning 2022 Jaime Sevilla
Lennart Heim
Anson Ho
Tamay Besiroglu
Marius Hobbhahn
Pablo Villalobos
+ PDF Chat Deep Learning and Machine Learning -- Python Data Structures and Mathematics Fundamental: From Theory to Practice 2024 Silin Chen
Ziqian Bi
Junyu Liu
Benji Peng
Sen Zhang
Xiaoyong Pan
Jiawei Xu
Jinlang Wang
Keyu Chen
Caitlyn Heqi Yin
+ Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems 2017 Celestine Dünner
Thomas Parnell
Martin Jaggi
+ PDF Chat High-Performance Kernel Machines With Implicit Distributed Optimization and Randomization 2015 Haim Avron
Vikas Sindhwani
+ PDF Chat On Linear Learning with Manycore Processors 2019 Eliza Wszola
Celestine Mendler-Dünner
Martin Jaggi
Markus Püschel
+ Greenformers: Improving Computation and Memory Efficiency in Transformer Models via Low-Rank Approximation 2021 Samuel Cahyawijaya