The primes contain arbitrarily long arithmetic progressions

Type: Preprint

Publication Date: 2004-01-01

Citations: 44

DOI: https://doi.org/10.48550/arxiv.math/0404188

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF The primes contain arbitrarily long arithmetic progressions 2008 Benjamin Green
Terence Tao
+ PDF Chat Narrow Arithmetic Progressions in the Primes 2016 Xuancheng Shao
+ Narrow arithmetic progressions in the primes 2015 Xuancheng Shao
+ Almost arithmetic progressions in the primes and other large sets 2018 Jonathan M. Fraser
+ A relative Szemerédi theorem 2013 David Conlon
Jacob Fox
Yufei Zhao
+ Arithmetic progressions of primes in short intervals 2007 Chunlei Liu
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov
+ Almost arithmetic progressions in the primes and other large sets 2018 Jonathan M. Fraser
+ PDF Almost Arithmetic Progressions in the Primes and Other Large Sets 2019 Jonathan M. Fraser
+ New Proofs of the Green-Tao-Ziegler Dense Model Theorem: An Exposition 2008 Omer Reingold
Luca Trevisan
Madhur Tulsiani
Salil Vadhan
+ Are there arbitrarily long arithmetic progressions in the sequence of twin primes? 2010 J. Pintz
+ The Gaussian primes contain arbitrarily shaped constellations 2005 Terence Tao
+ PDF Chat Large gaps between consecutive prime numbers 2016 Kevin Ford
Ben Green
Sergeĭ Konyagin
Terence Tao
+ PDF Approximate arithmetic structure in large sets of integers 2021 Jonathan M. Fraser
Han Yu
+ Dense clusters of primes in subsets 2014 James Maynard
+ Dense clusters of primes in subsets 2014 James E. Maynard
+ Large gaps between consecutive prime numbers 2014 Kevin Ford
Ben Green
Sergeĭ Konyagin
Terence Tao
+ PDF Chat A Multidimensional Szemerédi Theorem in the Primes via Combinatorics 2018 Brian Cook
Ákos Magyar
Tatchai Titichetrakun
+ PDF On the density of some special primes 2009 John Friedlander
Igor E. Shparlinski
+ Prime numbers in short arithmetic progressions 2014 Dimitris Koukoulopoulos