Random Matrices: The circular Law

Type: Preprint

Publication Date: 2007-01-01

Citations: 13

DOI: https://doi.org/10.48550/arxiv.0708.2895

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat RANDOM MATRICES: THE CIRCULAR LAW 2008 Terence Tao
Van Vu
+ Circular law for random discrete matrices of given row sum 2012 Hoi H. Nguyen
Van Vu
+ Circular law for random discrete matrices of given row sum 2012 Hoi H. Nguyen
Van Vu
+ The strong circular law: a combinatorial view 2019 Vishesh Jain
+ The strong circular law: a combinatorial view 2019 Vishesh Jain
+ The circular law for signed random regular digraphs 2015 Nicholas A. Cook
+ PDF From the Littlewood-Offord problem to the Circular Law: Universality of the spectral distribution of random matrices 2009 Terence Tao
Van Vu
+ The circular law for sparse non-Hermitian matrices 2017 Anirban Basak
Mark Rudelson
+ PDF Random matrices: Universality of ESDs and the circular law 2010 Terence Tao
Van Vu
Manjunath Krishnapur
+ PDF Chat The strong circular law: A combinatorial view 2020 Vishesh Jain
+ PDF Chat A revisit of the circular law 2024 Zhidong Bai
Jiang Hu
+ Quantitative invertibility of random matrices: a combinatorial perspective 2019 Vishesh Jain
+ The circular law for sparse non-Hermitian matrices 2017 Anirban Basak
Mark Rudelson
+ Random matrices: Universality of ESDs and the circular law 2008 Terence Tao
Van Vu
Manjunath Krishnapur
+ PDF The circular law for sparse non-Hermitian matrices 2019 Anirban Basak
Mark Rudelson
+ The sparse circular law, revisited 2023 Ashwin Sah
Julian Sahasrabudhe
Mehtaab Sawhney
+ The sparse circular law under minimal assumptions 2018 Mark Rudelson
Konstantin Tikhomirov
+ The sparse circular law under minimal assumptions 2018 Mark Rudelson
Konstantin Tikhomirov
+ From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices 2008 Terence Tao
Van Vu
+ PDF The circular law for random matrices 2010 Friedrich Götze
А. Н. Тихомиров