A note on the Freiman and Balog-Szemeredi-Gowers theorems in finite fields

Type: Preprint

Publication Date: 2007-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.math/0701585

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF A NOTE ON THE FREIMAN AND BALOG–SZEMERÉDI–GOWERS THEOREMS IN FINITE FIELDS 2009 Benjamin Green
Terence Tao
+ Freiman's theorem in finite fields via extremal set theory 2007 Ben Green
Terence Tao
+ PDF Chat Freiman's Theorem in Finite Fields via Extremal Set Theory 2009 Ben Green
Terence Tao
+ PDF Chat Finding a Low-dimensional Piece of a Set of Integers 2016 Freddie Manners
+ PDF Chat On Freiman's Theorem in a function field setting 2024 M. R. Wessel
+ Finding a low-dimensional piece of a set of integers 2015 Freddie Manners
+ The Freiman-Ruzsa Theorem in Finite Fields 2012 Chaim Even‐Zohar
Shachar Lovett
+ PDF Chat A polynomial Freiman-Ruzsa inverse theorem for function fields 2025 Thomas F. Bloom
+ PDF A counterexample to a strong variant of the Polynomial Freiman-Ruzsa conjecture in Euclidean space 2017 Shachar Lovett
Oded Regev
+ PDF Chat Brunn-Minkowski type estimates for certain discrete sumsets 2024 Albert Lopez Bruch
Yifan Jing
Akshat Mudgal
+ The Freiman--Ruzsa Theorem in Finite Fields 2012 Chaim Even‐Zohar
Shachar Lovett
+ The Freiman–Ruzsa theorem over finite fields 2014 Chaim Even‐Zohar
Shachar Lovett
+ PDF None 2015 Shachar Lovett
+ SETS WITH SMALL SUMSET AND RECTIFICATION 2006 Ben Green
Imre Z. Ruzsa
+ The polynomial Freiman-Ruzsa conjecture 2014 Ben J. Green
+ Sets with small sumset and rectification 2004 Ben Green
Imre Z. Ruzsa
+ Approximate groups and their applications: work of Bourgain, Gamburd, Helfgott and Sarnak 2009 Ben Green
+ A sum-product estimate in finite fields, and applications 2003 Jean Bourgain
Nets Hawk Katz
Terence Tao
+ An exposition of Sanders quasi-polynomial Freiman-Ruzsa theorem. 2012 Shachar Lovett
+ The Frobenius postage stamp problem, and beyond 2020 Andrew Granville
George Shakan