Approximate Distance Oracles with Improved Query Time

Type: Preprint

Publication Date: 2013-01-06

Citations: 20

DOI: https://doi.org/10.1137/1.9781611973105.39

Download PDF

Abstract

Previous chapter Next chapter Full AccessProceedings Proceedings of the 2013 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Approximate Distance Oracles with Improved Query TimeChristian Wulff-NilsenChristian Wulff-Nilsenpp.539 - 549Chapter DOI:https://doi.org/10.1137/1.9781611973105.39PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Given an undirected graph G with m edges, n vertices, and non-negative edge weights, and given an integer k ≥ 2, we show that a (2k − 1)-approximate distance oracle for G of size O(kn1+1/k) and with O(log k) query time can be constructed in O(min{kmn1/k, √km + kn1+c/ √k}) time for some constant c. This improves the O(k) query time of Thorup and Zwick. Furthermore, for any 0 < ∊ ≤ 1, we give an oracle of size O(kn1+1/k) that answers ((2 + ∊)k)-approximate distance queries in O(1/∊) time. At the cost of a k-factor in size, this improves the 128k approximation achieved by the constant query time oracle of Mendel and Naor and approaches the best possible tradeoff between size and stretch, implied by a widely believed girth conjecture of Erdős. We can match the O(n1+1/k) size bound of Mendel and Naor for any constant ∊ > 0 and k = O (log n/ log log n). Previous chapter Next chapter RelatedDetails Published:2013ISBN:978-1-61197-251-1eISBN:978-1-61197-310-5 https://doi.org/10.1137/1.9781611973105Book Series Name:ProceedingsBook Code:PR143Book Pages:xix + 1915

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Approximate Distance Oracles with Improved Query Time 2012 Christian Wulff-Nilsen
+ PDF Chat Approximate Distance Oracles with Improved Preprocessing Time 2012 Christian Wulff‐Nilsen
+ PDF Chat Approximate distance oracles with constant query time 2014 Shiri Chechik
+ Approximate Distance Oracle with Constant Query Time 2013 Shiri Chechik
+ Approximate Distance Oracles with Improved Preprocessing Time 2011 Christian Wulff-Nilsen
+ Approximate distance oracles revisited 2002 Joachim Gudmundsson
Christos Levcopoulos
Giri Narasimhan
Marcel Smid
+ Approximate Distance Oracles for Planar Graphs with Improved Query Time-Space Tradeoff 2015 Christian Wulff‐Nilsen
+ PDF Chat Beyond Locality-Sensitive Hashing 2013 Alexandr Andoni
Piotr Indyk
Huy L. Nguyễn
Ilya Razenshteyn
+ Approximate Distance Oracles for Planar Graphs with Improved Query Time-Space Tradeoff 2016 Christian Wulff-Nilsen
+ Constant Query Time $(1 + ε)$-Approximate Distance Oracle for Planar Graphs 2017 Qian‐Ping Gu
Gengchun Xu
+ Fast, precise and dynamic distance queries 2011 Yair Bartal
Lee-Ad Gottlieb
Tsvi Kopelowitz
Moshe Lewenstein
Liam Roditty
+ Planar Distance Oracles with Better Time-Space Tradeoffs 2020 Yaowei Long
Seth Pettie
+ PDF Chat A Linear-Size Logarithmic Stretch Path-Reporting Distance Oracle for General Graphs 2014 Michael Elkin
Seth Pettie
+ Fast, precise and dynamic distance queries 2011 Yair Bartal
Lee-Ad Gottlieb
Tsvi Kopelowitz
Moshe Lewenstein
Liam Roditty
+ Fast, precise and dynamic distance queries 2010 Yair Bartal
Lee-Ad Gottlieb
Tsvi Kopelowitz
Moshe Lewenstein
Liam Roditty
+ Improved Approximate Distance Oracles: Bypassing the Thorup-Zwick Bound in Dense Graphs 2023 Davide Bilò
Shiri Chechik
Keerti Choudhary
Sarel Cohen
Tobias Friedrich
Martin Schirneck
+ PDF Chat Improved distance sensitivity oracles with subcubic preprocessing time 2021 Hanlin Ren
+ PDF Chat Improved Distance Queries in Planar Graphs 2011 Yahav Nussbaum
+ PDF Chat Constant Query Time $$(1+\epsilon )$$ -Approximate Distance Oracle for Planar Graphs 2015 Qian‐Ping Gu
Gengchun Xu
+ Optimal Approximate Distance Oracle for Planar Graphs 2021 Hung Le
Christian Wulff‐Nilsen