Type: Preprint
Publication Date: 2009-01-01
Citations: 6
We give the algebra of quasimodular forms a collection of Rankin-Cohen operators. These operators extend those defined by Cohen on modular forms and, as for modular forms, the first of them provide a Lie structure on quasimodular forms. They also satisfy a ``Leibniz rule'' for the usual derivation. Rankin-Cohen operators are useful for proving arithmetic identities. In particular we give an interpretation of the Chazy equation and explain why such an equation has to exist.
Action | Title | Year | Authors |
---|