A new bound for finite field Besicovitch sets in four dimensions

Type: Preprint

Publication Date: 2002-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.math/0204251

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A new bound for finite field Besicovitch sets in four dimensions 2005 Terence Tao
+ PDF Chat The Finite Field Kakeya Problem 2008 Aart Blokhuis
Francesco Mazzocca
+ The Finite Field Kakeya Problem 2009 Aart Blokhuis
Francesco Mazzocca
+ On the Finite Field Kakeya Problem in Two Dimensions 2005 Xander Faber
+ PDF Chat On the finite field Kakeya problem in two dimensions 2006 Xander Faber
+ Finite field Kakeya and Nikodym sets in three dimensions 2016 Ben Lund
Shubhangi Saraf
Charles Wolf
+ PDF Chat Finite Field Kakeya and Nikodym Sets in Three Dimensions 2018 Ben Lund
Shubhangi Saraf
Charles Wolf
+ A Kakeya maximal function estimate in four dimensions using planebrushes 2019 Nets Hawk Katz
Joshua Zahl
+ A Kakeya maximal function estimate in four dimensions using planebrushes 2019 Nets Hawk Katz
Joshua Zahl
+ Sharp density bounds on the finite field Kakeya 2021 Boris Bukh
Ting-Wei Chao
+ PDF A Kakeya maximal function estimate in four dimensions using planebrushes 2020 Nets Hawk Katz
Joshua Zahl
+ A finite version of the Kakeya problem 2016 Simeon Ball
Aart Blokhuis
Diego Domenzain
+ A finite version of the Kakeya problem 2015 Simeon Ball
Aart Blokhuis
Diego Domenzain
+ PDF On the Size of Kakeya Sets in Finite Vector Spaces 2013 Gohar Kyureghyan
Peter Müller
Qi Wang
+ Szemer\'edi--Trotter-type theorems in dimension 3 2014 Janós Kollár
+ PDF The Kakeya Set conjecture over Z/NZ for general N 2024 Manik Dhar
+ PDF The Birch-Swinnerton-Dyer conjecture and Heegner points: A survey 2013 Wei Zhang
+ Szemerédi--Trotter-type theorems in dimension 3 2014 Janós Kollár
+ Spreads and a conjecture of Bruck and Bose 1972 Aiden A. Bruen
+ Number of directions determined by a set in $\mathbb{F}_{q}^{2}$ and growth in $\mathrm{Aff}(\mathbb{F}_{q})$ 2019 Daniele Dona

Works That Cite This (0)

Action Title Year Authors