Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Making Convolutional Networks Shift-Invariant Again
Richard Zhang
Type:
Preprint
Publication Date:
2019-04-25
Citations:
118
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Making Convolutional Networks Shift-Invariant Again
2019
Richard Zhang
+
Truly shift-invariant convolutional neural networks
2020
Anadi Chaman
Ivan Dokmanić
+
Truly shift-invariant convolutional neural networks
2020
Anadi Chaman
Ivan Dokmanić
+
Constructing Fast Network through Deconstruction of Convolution
2018
Yunho Jeon
Junmo Kim
+
Constructing Fast Network through Deconstruction of Convolution
2018
Yunho Jeon
Junmo Kim
+
Convolutional layers are equivariant to discrete shifts but not continuous translations
2022
Nick McGreivy
Ammar Hakim
+
Translation Insensitive CNNs.
2019
Ganesh Sundaramoorthi
Timothy E. Wang
+
Translation Insensitive CNNs
2019
Ganesh Sundaramoorthi
Timothy E. Wang
+
Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations
2023
Hagay Michaeli
Tomer Michaeli
Daniel Soudry
+
DeepShift: Towards Multiplication-Less Neural Networks
2019
Mostafa Elhoushi
Zihao Chen
Farhan Shafiq
Ye Tian
Joey Yiwei Li
+
From CNNs to Shift-Invariant Twin Models Based on Complex Wavelets
2022
Hubert Leterme
KĂ©vin Polisano
Valérie Perrier
Karteek Alahari
+
PDF
Chat
Don't Think It Twice: Exploit Shift Invariance for Efficient Online Streaming Inference of CNNs
2024
Christodoulos Kechris
Jonathan Dan
José A. Miranda
David Atienza
+
All You Need is a Few Shifts: Designing Efficient Convolutional Neural Networks for Image Classification
2019
Weijie Chen
Di Xie
Yuan Zhang
Shiliang Pu
+
PDF
Chat
4-Connected Shift Residual Networks
2019
Andrew Brown
Pascal Mettes
Marcel Worring
+
PDF
Chat
Attention Based Pruning for Shift Networks
2021
Ghouthi Boukli Hacene
Carlos Lassance
Vincent Gripon
Matthieu Courbariaux
Yoshua Bengio
+
From Discrete to Continuous Convolution Layers
2020
Assaf Shocher
Ben Feinstein
Niv Haim
Michal Irani
+
Fix your downsampling ASAP! Be natively more robust via Aliasing and Spectral Artifact free Pooling
2023
Julia Grabinski
Janis Keuper
Margret Keuper
+
PDF
Chat
Detail-Preserving Pooling in Deep Networks
2018
Faraz Saeedan
Nicolas Weber
Michael Goesele
Stefan Roth
+
Detail-Preserving Pooling in Deep Networks
2018
Faraz Saeedan
Nicolas Weber
Michael Goesele
Stefan Roth
+
Quantifying Translation-Invariance in Convolutional Neural Networks
2018
Eric Kauderer-Abrams
Works That Cite This (66)
Action
Title
Year
Authors
+
Squared 𝓁 2 Norm as Consistency Loss for Leveraging Augmented Data to Learn Robust and Invariant Representations.
2020
Haohan Wang
Zeyi Huang
Xindi Wu
Eric P. Xing
+
Towards Generative Video Compression
2021
Fabian Mentzer
Eirikur Agustsson
Johannes Ballé
David Minnen
Nick Johnston
George Toderici
+
Why do deep convolutional networks generalize so poorly to small image transformations
2018
Aharon Azulay
Yair Weiss
+
On Robustness and Transferability of Convolutional Neural Networks
2020
Josip Djolonga
Jessica Yung
Michael Tschannen
Rob Romijnders
Lucas Beyer
Alexander Kolesnikov
Joan Puigcerver
Matthias Minderer
Alexander D’Amour
Dan Moldovan
+
PDF
Chat
Highlighting the Importance of Reducing Research Bias and Carbon Emissions in CNNs
2022
Ahmed Badar
Arnav Varma
Adrian Staniec
Mahmoud Gamal
Omar Magdy
Haris Iqbal
Elahe Arani
Bahram Zonooz
+
PDF
Chat
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
2020
Jinjin Gu
Cai Haoming
Haoyu Chen
Ye Xiaoxing
Jimmy Ren
Chao Dong
+
PDF
Chat
RANSAC-Flow: Generic Two-Stage Image Alignment
2020
Xi Shen
François Darmon
Alexei A. Efros
Mathieu Aubry
+
Blurring the Line Between Structure and Learning to Optimize and Adapt Receptive Fields.
2019
Evan Shelhamer
Dequan Wang
Trevor Darrell
+
PDF
Chat
What Does CNN Shift Invariance Look Like? A Visualization Study
2020
Jake Lee
Junfeng Yang
Zhangyang Wang
+
PDF
Chat
Periodic Astrometric Signal Recovery Through Convolutional Autoencoders
2021
Michele Delli Veneri
Louis Desdoigts
Morgan A. Schmitz
A. Krone-Martins
Émille E. O. Ishida
Peter Tuthill
Rafael S. de Souza
R. Scalzo
M. Brescia
G. Longo
Works Cited by This (28)
Action
Title
Year
Authors
+
PDF
Chat
Understanding Deep Features with Computer-Generated Imagery
2015
Mathieu Aubry
Bryan Russell
+
PDF
Chat
Understanding image representations by measuring their equivariance and equivalence
2015
Karel Lenc
Andrea Vedaldi
+
PDF
Chat
Understanding deep image representations by inverting them
2015
Aravindh Mahendran
Andrea Vedaldi
+
PDF
Chat
Invariant Scattering Convolution Networks
2013
Joan Bruna
Stéphane Mallat
+
PDF
Chat
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
2014
Ross Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
+
PDF
Chat
ImageNet Large Scale Visual Recognition Challenge
2015
Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
+
Convolutional Kernel Networks
2014
Julien Mairal
Piotr Koniusz
ZaĂŻd Harchaoui
Cordelia Schmid
+
PDF
Chat
The redundant discrete wavelet transform and additive noise
2005
James E. Fowler
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+
PDF
Chat
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
2017
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Murphy
Alan Yuille