The honeycomb model of GL(n) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone

Type: Preprint

Publication Date: 2001-01-01

Citations: 18

DOI: https://doi.org/10.48550/arxiv.math/0107011

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The honeycomb model of 𝐺𝐿_{𝑛}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone 2003 Allen Knutson
Terence Tao
Christopher T. Woodward
+ PDF The honeycomb model of $GL_n(\mathbb C)$ tensor products I: Proof of the saturation conjecture 1999 Allen Knutson
Terence Tao
+ Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals 2018 Brett M. Collins
+ The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture 1998 Allen Knutson
Terence Tao
+ Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals 2021 Brett M. Collins
+ Extremal rays in the Hermitian eigenvalue problem 2017 Prakash Belkale
+ A dual Littlewood-Richardson rule and extensions 2022 Oliver Pechenik
Anna Weigandt
+ PDF Sparse spectrally arbitrary patterns 2015 Brydon Eastman
Bryan L. Shader
Kevin N. Vander Meulen
+ PDF Chat Extremal rays in the Hermitian eigenvalue problem 2018 Prakash Belkale
+ LITTLEWOOD-RICHARDSON COEFFICIENTS AND EXTREMAL WEIGHT CRYSTALS (Representation Theory and Combinatorics) 2010 Jae-Hoon Kwon
+ PDF Generalized Littlewood–Richardson coefficients for branching rules of GL<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>and extremal weight crystals 2020 Brett M. Collins
+ Extremal rays in the Hermitian eigenvalue problem 2017 Prakash Belkale
+ PDF Honeycombs from Hermitian Matrix Pairs 2014 Glenn D. Appleby
Tamsen Whitehead
+ PDF Eigenvalues, invariant factors, highest weights, and Schubert calculus 2000 William Fulton
+ PDF Chat The Horn inequalities from a geometric point of view 2018 Nicole Berline
Michèle Vergne
Michael Walter
+ The honeycomb model of the Berenstein-Zelevinsky polytope I. Klyachko's saturation conjecture 1998 Allen Knutson
Terence Tao
+ A combinatorial rule for (co)minuscule Schubert calculus 2009 Hugh Thomas
Alexander Yong
+ Gr\"obner geometry of Schubert polynomials through ice. 2020 Zachary Hamaker
Oliver Pechenik
Anna Weigandt
+ Geometric Complexity Theory IV: nonstandard quantum group for the Kronecker problem 2007 Jonah Blasiak
Ketan Mulmuley
Milind Sohoni
+ Geometric Complexity Theory IV: nonstandard quantum group for the Kronecker problem 2007 Jonah Blasiak
Ketan Mulmuley
Milind Sohoni