Exterior Mass Estimates and L2-Restriction Bounds for Neumann Data Along Hypersurfaces

Type: Article

Publication Date: 2014-01-01

Citations: 2

DOI: https://doi.org/10.17615/ar7p-vs81

Abstract

We study the problem of estimating the $L^2$ norm of Laplace eigenfunctions on a compact Riemannian manifold $M$ when restricted to a hypersurface $H$. We prove mass estimates for the restrictions of eigenfunctions $\phi_h$, $(h^2 \Delta - 1)\phi_h = 0$, to $H$ in the region exterior to the coball bundle of $H$, on $h^{\delta}$-scales ($0\leq \delta < 2/3$). We use this estimate to obtain an $O(1)$ $L^2$-restriction bound for the Neumann data along $H.$ The estimate also applies to eigenfunctions of semiclassical Schr\odinger operators.

Locations

  • arXiv (Cornell University) - View - PDF
  • Carolina Digital Repository (University of North Carolina at Chapel Hill) - View - PDF

Similar Works

Action Title Year Authors
+ Exterior mass estimates and $L^2$ restriction bounds for Neumann data along hypersurfaces 2013 Hans Christianson
Andrew Hassell
John A. Toth
+ Improvements in $L^2$ Restriction bounds for Neumann Data along Hypersurfaces 2022 Wu Xianchao
+ Semiclassical Control and $L^2$ restriction bounds for Neumann data along hypersurfaces 2013 Hans Christianson
Andrew Hassell
John A. Toth
+ PDF Chat The $L^p$ restriction bounds for Neumann data on surface 2024 Xianchao Wu
+ PDF Chat Exterior Mass Estimates and L2-Restriction Bounds for Neumann Data Along Hypersurfaces 2014 Hans Christianson
Andrew Hassell
Juraj Tóth
+ PDF Chat Small-scale mass estimates for Laplace eigenfunctions on compact $C^{2}$ manifolds with boundary 2024 Hans Christianson
John A. Toth
+ The quantization of normal velocity does not concentrate on hypersurfaces 2017 Melissa Tacy
+ PDF Chat Nonexistence of invariant nodal line and improved $L^2$ restriction bounds for Neumann data on negatively curved surface 2024 Xianchao Wu
Lan Zhang
+ PDF Chat Lower Bounds for Eigenfunction Restrictions in Lacunary Regions 2023 Yaiza Canzani
John A. Toth
+ Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions 2002 Andrew Hassell
Terence Tao
+ Neumann spectral cluster estimates outside convex obstacles 2010 Sinan Ariturk
+ PDF Chat Refined $L^p$ restriction estimate for eigenfunctions on Riemannian surfaces 2024 Chao Gao
Changxing Miao
Yakun Xi
+ Lower bounds for eigenfunction restrictions in lacunary regions 2022 Yaiza Canzani
John A. Toth
+ PDF Chat Fourier coefficients of restrictions of eigenfunctions 2023 Emmett L. Wyman
Yakun Xi
Steve Zelditch
+ PDF Chat Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions 2002 Andrew Hassell
Terence Tao
+ Fourier coefficients of restrictions of eigenfunctions 2020 Emmett L. Wyman
Yakun Xi
Steve Zelditch
+ PDF Chat Lower Bounds for Nodal Sets of Dirichlet and Neumann Eigenfunctions 2012 Sinan Ariturk
+ The 𝐿<sup>𝑝</sup> restriction bounds for Neumann data on surface 2024 Xianchao Wu
+ Spectral asymptotics of the Maxwell operator on Lipschitz manifolds with boundary 2008 M. N. Demchenko
N. Filonov
+ PDF Chat The<i>L</i><sup>2</sup>behavior of eigenfunctions near the glancing set 2016 Jeffrey Galkowski