Type: Article
Publication Date: 2014-01-01
Citations: 2
DOI: https://doi.org/10.17615/ar7p-vs81
We study the problem of estimating the $L^2$ norm of Laplace eigenfunctions on a compact Riemannian manifold $M$ when restricted to a hypersurface $H$. We prove mass estimates for the restrictions of eigenfunctions $\phi_h$, $(h^2 \Delta - 1)\phi_h = 0$, to $H$ in the region exterior to the coball bundle of $H$, on $h^{\delta}$-scales ($0\leq \delta < 2/3$). We use this estimate to obtain an $O(1)$ $L^2$-restriction bound for the Neumann data along $H.$ The estimate also applies to eigenfunctions of semiclassical Schr\odinger operators.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Small scale quantum ergodicity in negatively curved manifolds | 2015 |
Xiaolong Han |
+ | The quantisation of normal velocity does not concentrate on hypersurfaces | 2014 |
Melissa Tacy |