A remark on normal forms and the "upside-down" I-method for periodic NLS: growth of higher Sobolev norms

Type: Preprint

Publication Date: 2010-10-12

Citations: 1

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ A remark on normal forms and the "upside-down" I-method for periodic NLS: growth of higher Sobolev norms 2010 J. Colliander
Soonsik Kwon
Tadahiro Oh
+ Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces 2017 Tadahiro Oh
Yuzhao Wang
+ PDF Chat GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES 2018 Tadahiro Oh
Yuzhao Wang
+ Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS 2011 Zihua Guo
Soonsik Kwon
Tadahiro Oh
+ Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces 2018 Tadahiro Oh
Yuzhao Wang
+ PDF Chat Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces 2021 Tadahiro Oh
Yuzhao Wang
+ PDF Chat Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on $S^1$ 2011 Vedran Sohinger
+ Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrodinger Equations on $S^1$ 2010 Vedran Sohinger
+ PDF Chat Knocking Out Teeth in One-Dimensional Periodic Nonlinear Schrödinger Equation 2019 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+ Non-existence of solutions for the periodic cubic NLS below $L^2$ 2015 Zihua Guo
Tadahiro Oh
+ PDF Chat Non-Existence of Solutions for the Periodic Cubic NLS below ${L}^{{2}}$ 2016 Zihua Guo
Tadahiro Oh
+ On well-posedness results for the cubic-quintic NLS on $\mathbb{T}^3$ 2023 Luo Yongming
Xueying Yu
Haitian Yue
Zehua Zhao
+ Low regularity estimates of the Lie-Totter time-splitting Fourier spectral method for the logarithmic Schrödinger equation 2024 Xiaolong Zhang
Li-Lian Wang
+ PDF Chat On the growth of Sobolev norms for NLS on 2- and 3-dimensional manifolds 2017 Fabrice Planchon
Nikolay Tzvetkov
Nicola Visciglia
+ On the periodic Korteweg-de Vries equation: a normal form approach 2011 Seungly Oh
+ PDF Chat Norm inflation for a higher-order nonlinear Schr\"odinger equation with a derivative on the circle 2024 Toshiki Kondo
Mamoru Okamoto
+ Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm 2002 Jim Colliander
Mark Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation 2012 Marcel Guàrdia
V. A. Kaloshin
+ Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential 1999 Jean Bourgain
+ PDF Chat Bounds on the growth of high Sobolev norms of solutions to nonlinear Schroedinger equations on $\mathbb{R}$ 2011 Vedran Sohinger