Local-global compatibility and the action of monodromy on nearby cycles

Type: Article

Publication Date: 2012-09-06

Citations: 119

DOI: https://doi.org/10.1215/00127094-1723706

Abstract

We strengthen the local-global compatibility of Langlands correspondences for GLn in the case when n is even and l≠p. Let L be a CM field, and let Π be a cuspidal automorphic representation of GLn(AL) which is conjugate self-dual. Assume that Π∞ is cohomological and not “slightly regular,” as defined by Shin. In this case, Chenevier and Harris constructed an l-adic Galois representation Rl(Π) and proved the local-global compatibility up to semisimplification at primes v not dividing l. We extend this compatibility by showing that the Frobenius semisimplification of the restriction of Rl(Π) to the decomposition group at v corresponds to the image of Πv via the local Langlands correspondence. We follow the strategy of Taylor and Yoshida, where it was assumed that Π is square-integrable at a finite place. To make the argument work, we study the action of the monodromy operator N on the complex of nearby cycles on a scheme which is locally étale over a product of strictly semistable schemes and we derive a generalization of the weight spectral sequence in this case. We also prove the Ramanujan–Petersson conjecture for Π as above.

Locations

  • Duke Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF
  • Digital Access to Scholarship at Harvard (DASH) (Harvard University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Local-global compatibility for regular algebraic cuspidal automorphic representation when $\ell \neq p$ 2014 Ila Varma
+ Compatibility of local and global Langlands correspondences 2004 Richard Taylor
Teruyoshi Yoshida
+ PDF Chat Monodromy and local-global compatibility for<i>l</i>=<i>p</i> 2014 Ana Caraiani
+ PDF Chat Local-global compatibility for regular algebraic cuspidal automorphic representations when 2024 Ila Varma
+ The Local Langlands correspondence for $\GL_n$ over $p$-adic fields 2010 Peter Scholze
+ The Local Langlands correspondence for $\GL_n$ over $p$-adic fields 2010 Peter Scholze
+ PDF Chat Local-global compatibility for $l=p$, II 2014 Thomas Barnet-Lamb
Toby Gee
David Geraghty
Richard Taylor
+ PDF Chat The Local Langlands Correspondence for GL n over p-adic fields 2012 Peter Scholze
+ Local-global compatibility for l=p, II 2011 Thomas Barnet-Lamb
Toby Gee
David F. Geraghty
Richard J. K. Taylor
+ Local-global compatibility for l=p, I 2011 Thomas Barnet-Lamb
Toby Gee
David Geraghty
Richard Taylor
+ Local-global compatibility for l=p, I 2011 Thomas Barnet-Lamb
Toby Gee
David F. Geraghty
Richard J. K. Taylor
+ PDF Chat Galois representations arising from some compact Shimura varieties 2011 Sug Woo Shin
+ PDF Chat Local-global compatibility for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mi>p</mml:mi></mml:mrow></mml:math>, I 2012 Thomas Barnet-Lamb
Toby Gee
David Geraghty
Richard Taylor
+ PDF Chat A Rank-Two Case of Local-Global Compatibility for $l = p$ 2024 Yuji Yang
+ PDF Chat Towards an explicit local Jacquet–Langlands correspondence beyond the cuspidal case 2019 Vincent Sécherre
Shaun Stevens
+ A geometric Jacquet-Langlands correspondence for U(2) Shimura varieties 2004 David Helm
+ PDF Chat Galois representations attached to Hilbert-Siegel modular forms 2010 Claus Sorensen
+ Monodromy for some rank two Galois representations over CM fields 2019 Patrick B. Allen
James Newton
+ The local Langlands correspondence for $\DeclareMathOperator{\GL}{GL}\GL_n$ over function fields 2021 Siyan Daniel Li-Huerta
+ A geometric Jacquet-Langlands correspondence for U(2) Shimura varieties 2004 David Helm