Inverse Covariance Estimation for High-Dimensional Data in Linear Time and Space: Spectral Methods for Riccati and Sparse Models

Type: Preprint

Publication Date: 2013-09-26

Citations: 13

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Inverse Covariance Estimation for High-Dimensional Data in Linear Time and Space: Spectral Methods for Riccati and Sparse Models 2013 Jean Honorio
Tommi Jaakkola
+ Sparse inverse covariance estimation with the graphical lasso 2007 Jerome H. Friedman
Trevor Hastie
R. Tibshirani
+ Sparse Inverse Covariance Estimation via an Adaptive Gradient-Based Method 2011 Suvrit Sra
Dong‐Min Kim
+ G-AMA: Sparse Gaussian graphical model estimation via alternating minimization 2014 Onkar Dalal
Bala Rajaratnam
+ Large-Scale Sparse Inverse Covariance Estimation via Thresholding and Max-Det Matrix Completion 2018 Richard Y. Zhang
Salar Fattahi
Somayeh Sojoudi
+ Large-Scale Sparse Inverse Covariance Estimation via Thresholding and Max-Det Matrix Completion 2018 Richard Y. Zhang
Salar Fattahi
Somayeh Sojoudi
+ Large-Scale Sparse Inverse Covariance Estimation via Thresholding and Max-Det Matrix Completion 2018 Richard Y. Zhang
Salar Fattahi
Somayeh Sojoudi
+ Convex optimization techniques for fitting sparse Gaussian graphical models 2006 Onureena Banerjee
Laurent El Ghaoui
Alexandre d’Aspremont
Georges Natsoulis
+ Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models 2018 Richard Y. Zhang
Salar Fattahi
Somayeh Sojoudi
+ A convex framework for high-dimensional sparse Cholesky based covariance estimation 2016 Kshitij Khare
Sang Min Oh
Syed M Rahman
Bala Rajaratnam
+ A convex framework for high-dimensional sparse Cholesky based covariance estimation 2016 Kshitij Khare
S. H. Oh
Syed M Rahman
Bala Rajaratnam
+ Efficient Latent Variable Graphical Model Selection via Split Bregman Method 2011 Gui–Bo Ye
Yuanfeng Wang
Yifei Chen
Xiaohui Xie
+ Sparse Inverse Covariance Selection via Alternating Linearization Methods 2010 Katya Scheinberg
Shiqian Ma
Donald Goldfarb
+ High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods 2011 Christopher C. Johnson
Ali Jalali
Pradeep Ravikumar
+ High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods 2011 Christopher C. Johnson
Ali Jalali
Pradeep Ravikumar
+ PDF Chat Certifiably optimal sparse inverse covariance estimation 2019 Dimitris Bertsimas
Jourdain Lamperski
Jean Pauphilet
+ Sparse inverse covariance estimation with the lasso 2007 Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
+ A Block-Coordinate Descent Approach for Large-scale Sparse Inverse Covariance Estimation 2014 Eran Treister
Javier S. Turek
+ High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods 2012 Christopher C. Johnson
Ali Jalali
Pradeep Ravikumar
+ BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables 2013 Cho‐Jui Hsieh
MĂĄtyĂĄs A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
Russell A. Poldrack

Works That Cite This (10)

Action Title Year Authors
+ Efficient Covariance Estimation from Temporal Data 2019 Hrayr Harutyunyan
Daniel Moyer
Hrant Khachatrian
Greg Ver Steeg
Aram Galstyan
+ Caulking the Leakage Effect in MEEG Source Connectivity Analysis 2018 Eduardo Gonzalez-Moreira
Deirel Paz-Linares
Ariosky Areces-GonzĂĄlez
Rigel Wang
Jorge Bosch‐Bayard
Maria L. Bringas‐Vega
Pedro A. ValdĂ©s‐Sosa
+ Neural Connectivity with Hidden Gaussian Graphical State-Model 2018 Deirel Paz-Linares
Eduardo Gonzalez-Moreira
Jorge Bosch‐Bayard
Ariosky Areces-GonzĂĄlez
Maria L. Bringas‐Vega
Pedro A. ValdĂ©s‐Sosa
+ PDF Chat ZeroER: Entity Resolution using Zero Labeled Examples 2020 Renzhi Wu
Sanya Chaba
Saurabh Sawlani
Xu Chu
Saravanan Thirumuruganathan
+ A multilevel framework for sparse optimization with application to inverse covariance estimation and logistic regression 2016 Eran Treister
Javier S. Turek
Irad Yavneh
+ PDF Chat Effective Learning of a GMRF Mixture Model 2022 Shahaf E. Finder
Eran Treister
Oren Freifeld
+ Identification of oscillatory brain networks with Hidden Gaussian Graphical Spectral models of EEG/MEG 2022 Deirel Paz-Linares
Eduardo Gonzalez-Moreira
Ariosky Areces-GonzĂĄlez
Ying Wang
Min Li
Eduardo Martínez‐Montes
Maria L. Bringas‐Vega
Mitchell Valdés-Sosa
Pedro A. ValdĂ©s‐Sosa
+ Sparse Precision Matrix Selection for Fitting Gaussian Random Field Models to Large Data Sets 2014 Sam Davanloo Tajbakhsh
Necdet Serhat Aybat
Enrique Del Castillo
+ Effective Learning of a GMRF Mixture Model. 2020 Shahaf E. Finder
Eran Treister
Oren Freifeld
+ Identification of oscillatory brain networks with Hidden Gaussian Graphical Spectral models of EEG/MEG 2022 Deirel Paz-Linares
Eduardo Gonzalez-Moreira
Ariosky Areces-GonzĂĄlez
Ying Wang
Min Li
Eduardo Martínez‐Montes
Maria L. Bringas-Vega
Mitchell Valdés-Sosa
Pedro A. ValdĂ©s‐Sosa

Works Cited by This (0)

Action Title Year Authors