Early Stopping is Nonparametric Variational Inference

Type: Preprint

Publication Date: 2015-01-01

Citations: 12

DOI: https://doi.org/10.48550/arxiv.1504.01344

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Early Stopping as Nonparametric Variational Inference 2016 David Duvenaud
Dougal Maclaurin
Ryan P. Adams
+ Gradient Regularisation as Approximate Variational Inference 2020 Ali Ünlü
Laurence Aitchison
+ Differentiable Annealed Importance Sampling and the Perils of Gradient Noise 2021 Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger Grosse
+ A variational analysis of stochastic gradient algorithms 2016 Stephan Mandt
Matthew D. Hoffman
David M. Blei
+ A Variational Analysis of Stochastic Gradient Algorithms 2016 Stephan Mandt
Matthew D. Hoffman
David M. Blei
+ Importance Sampled Stochastic Optimization for Variational Inference 2017 Joseph Sakaya
Arto Klami
+ Kalman Gradient Descent: Adaptive Variance Reduction in Stochastic Optimization 2018 James Vuckovic
+ Convergence Rates of Variational Inference in Sparse Deep Learning 2019 Badr-Eddine Chérief-Abdellatif
+ Why do Gradient Methods Work in Optimization and Sampling 2021 Niladri S. Chatterji
+ PDF Chat Batch and match: black-box variational inference with a score-based divergence 2024 Diana Cai
Chirag Modi
Loucas Pillaud-Vivien
Charles C. Margossian
Robert M. Gower
David M. Blei
Lawrence K. Saul
+ Improved Gradient-Based Optimization Over Discrete Distributions 2018 Evgeny Andriyash
Arash Vahdat
William G. Macready
+ Improving Explorability in Variational Inference with Annealed Variational Objectives 2018 Chin-Wei Huang
Shawn Tan
Alexandre Lacoste
Aaron Courville
+ Improving Explorability in Variational Inference with Annealed Variational Objectives 2018 Chin-Wei Huang
Shawn Tan
Alexandre Lacoste
Aaron Courville
+ Fast Second-Order Stochastic Backpropagation for Variational Inference 2015 Kai Fan
Ziteng Wang
Jeffrey Beck
James T. Kwok
Katherine Heller
+ Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference 2017 Geoffrey Roeder
Yuhuai Wu
David Duvenaud
+ Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference 2017 Geoffrey Roeder
Yuhuai Wu
David Duvenaud
+ PDF Chat Sequential Monte Carlo for Inclusive KL Minimization in Amortized Variational Inference 2024 Declan McNamara
Jackson Loper
Jeffrey Regier
+ PDF Chat Scalable estimation strategies based on stochastic approximations: classical results and new insights 2015 Panos Toulis
Edoardo M. Airoldi
+ PDF Chat Robust, Accurate Stochastic Optimization for Variational Inference 2020 Akash Kumar Dhaka
Alejandro Catalina
Michael Riis Andersen
Måns Magnusson
Jonathan H. Huggins
Aki Vehtari
+ Robust, Accurate Stochastic Optimization for Variational Inference 2020 Akash Kumar Dhaka
Alejandro Catalina
Michael Riis Andersen
Måns Magnusson
Jonathan H. Huggins
Aki Vehtari