Theory of Dual-sparse Regularized Randomized Reduction

Type: Preprint

Publication Date: 2015-04-15

Citations: 6

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Theory of Dual-sparse Regularized Randomized Reduction 2015 Tianbao Yang
Lijun Zhang
Rong Jin
Shenghuo Zhu
+ Sparse Learning for Large-scale and High-dimensional Data: A Randomized Convex-concave Optimization Approach 2015 Lijun Zhang
Tianbao Yang
Rong Jin
Zhihua Zhou
+ Sketching meets random projection in the dual: A provable recovery algorithm for big and high-dimensional data 2017 Jialei Wang
Jason D. Lee
Mehrdad Mahdavi
Mladen Kolar
Nathan Srebro
+ PDF Chat Efficient Non-Oblivious Randomized Reduction for Risk Minimization with Improved Excess Risk Guarantee 2017 Yi Xu
Haiqin Yang
Lijun Zhang
Tianbao Yang
+ Efficient Non-oblivious Randomized Reduction for Risk Minimization with Improved Excess Risk Guarantee 2016 Yi Xu
Haiqin Yang
Lijun Zhang
Tianbao Yang
+ Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data 2016 Jialei Wang
Jason D. Lee
Mehrdad Mahdavi
Mladen Kolar
Nathan Srebro
+ Random Projections and Dimension Reduction 2020 Rishi Advani
Madison Crim
Sean O’Hagan
+ Random Projections and Dimension Reduction 2020 Rishi Advani
Madison Crim
Sean O'Hagan
+ Recovering the Optimal Solution by Dual Random Projection 2012 Lijun Zhang
Mehrdad Mahdavi
Rong Jin
Tianbao Yang
Shenghuo Zhu
+ PDF Chat Sparse Learning for Large-Scale and High-Dimensional Data: A Randomized Convex-Concave Optimization Approach 2016 Lijun Zhang
Tianbao Yang
Rong Jin
Zhi‐Hua Zhou
+ PDF Chat The backbone method for ultra-high dimensional sparse machine learning 2022 Dimitris Bertsimas
Vassilis Digalakis
+ Coresets for Vertical Federated Learning: Regularized Linear Regression and $K$-Means Clustering 2022 Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
+ Big Data Analytics 2015 Tianbao Yang
Qihang Lin
Rong Jin
+ High-Dimensional Optimization in Adaptive Random Subspaces 2019 Jonathan Lacotte
Mert Pilancı
Marco Pavone
+ High-Dimensional Optimization in Adaptive Random Subspaces 2019 Jonathan Lacotte
Mert Pilancı
Marco Pavone
+ Precise expressions for random projections: Low-rank approximation and randomized Newton 2020 Michał Dereziński
Feynman Liang
Zhenyu Liao
Michael W. Mahoney
+ Precise expressions for random projections: Low-rank approximation and randomized Newton 2020 Michał Dereziński
Feynman Liang
Zhenyu Liao
Michael W. Mahoney
+ Feature Clustering for Accelerating Parallel Coordinate Descent 2012 Chad Scherrer
Ambuj Tewari
Mahantesh Halappanavar
David J. Haglin
+ Efficient Distributed Learning with Sparsity 2016 Jialei Wang
Mladen Kolar
Nathan Srebro
Tong Zhang
+ Fast Composite Optimization and Statistical Recovery in Federated Learning 2022 Yajie Bao
Michael Crawshaw
Shan Luo
Mingrui Liu