Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Theory of Dual-sparse Regularized Randomized Reduction
Tianbao Yang
,
Lijun Zhang
,
Rong Jin
,
Shenghuo Zhu
Type:
Preprint
Publication Date:
2015-04-15
Citations:
6
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Theory of Dual-sparse Regularized Randomized Reduction
2015
Tianbao Yang
Lijun Zhang
Rong Jin
Shenghuo Zhu
+
Sparse Learning for Large-scale and High-dimensional Data: A Randomized Convex-concave Optimization Approach
2015
Lijun Zhang
Tianbao Yang
Rong Jin
Zhihua Zhou
+
Sketching meets random projection in the dual: A provable recovery algorithm for big and high-dimensional data
2017
Jialei Wang
Jason D. Lee
Mehrdad Mahdavi
Mladen Kolar
Nathan Srebro
+
PDF
Chat
Efficient Non-Oblivious Randomized Reduction for Risk Minimization with Improved Excess Risk Guarantee
2017
Yi Xu
Haiqin Yang
Lijun Zhang
Tianbao Yang
+
Efficient Non-oblivious Randomized Reduction for Risk Minimization with Improved Excess Risk Guarantee
2016
Yi Xu
Haiqin Yang
Lijun Zhang
Tianbao Yang
+
Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data
2016
Jialei Wang
Jason D. Lee
Mehrdad Mahdavi
Mladen Kolar
Nathan Srebro
+
Random Projections and Dimension Reduction
2020
Rishi Advani
Madison Crim
Sean O’Hagan
+
Random Projections and Dimension Reduction
2020
Rishi Advani
Madison Crim
Sean O'Hagan
+
Recovering the Optimal Solution by Dual Random Projection
2012
Lijun Zhang
Mehrdad Mahdavi
Rong Jin
Tianbao Yang
Shenghuo Zhu
+
PDF
Chat
Sparse Learning for Large-Scale and High-Dimensional Data: A Randomized Convex-Concave Optimization Approach
2016
Lijun Zhang
Tianbao Yang
Rong Jin
Zhi‐Hua Zhou
+
PDF
Chat
The backbone method for ultra-high dimensional sparse machine learning
2022
Dimitris Bertsimas
Vassilis Digalakis
+
Coresets for Vertical Federated Learning: Regularized Linear Regression and $K$-Means Clustering
2022
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
+
Big Data Analytics
2015
Tianbao Yang
Qihang Lin
Rong Jin
+
High-Dimensional Optimization in Adaptive Random Subspaces
2019
Jonathan Lacotte
Mert Pilancı
Marco Pavone
+
High-Dimensional Optimization in Adaptive Random Subspaces
2019
Jonathan Lacotte
Mert Pilancı
Marco Pavone
+
Precise expressions for random projections: Low-rank approximation and randomized Newton
2020
Michał Dereziński
Feynman Liang
Zhenyu Liao
Michael W. Mahoney
+
Precise expressions for random projections: Low-rank approximation and randomized Newton
2020
Michał Dereziński
Feynman Liang
Zhenyu Liao
Michael W. Mahoney
+
Feature Clustering for Accelerating Parallel Coordinate Descent
2012
Chad Scherrer
Ambuj Tewari
Mahantesh Halappanavar
David J. Haglin
+
Efficient Distributed Learning with Sparsity
2016
Jialei Wang
Mladen Kolar
Nathan Srebro
Tong Zhang
+
Fast Composite Optimization and Statistical Recovery in Federated Learning
2022
Yajie Bao
Michael Crawshaw
Shan Luo
Mingrui Liu
Works That Cite This (5)
Action
Title
Year
Authors
+
PDF
Chat
Efficient Non-Oblivious Randomized Reduction for Risk Minimization with Improved Excess Risk Guarantee
2017
Yi Xu
Haiqin Yang
Lijun Zhang
Tianbao Yang
+
PDF
Chat
Sparse Learning for Large-Scale and High-Dimensional Data: A Randomized Convex-Concave Optimization Approach
2016
Lijun Zhang
Tianbao Yang
Rong Jin
Zhi‐Hua Zhou
+
Finding Heavily-Weighted Features in Data Streams.
2017
Kai Sheng Tai
Vatsal Sharan
Peter Bailis
Gregory Valiant
+
Sketching Linear Classifiers over Data Streams
2017
Kai Sheng Tai
Vatsal Sharan
Peter Bailis
Gregory Valiant
+
Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data
2016
Jialei Wang
Jason D. Lee
Mehrdad Mahdavi
Mladen Kolar
Nathan Srebro
Works Cited by This (11)
Action
Title
Year
Authors
+
Finding Important Genes from High-Dimensional Data: An Appraisal of Statistical Tests and Machine-Learning Approaches
2012
Chamont Wang
Jana L. Gevertz
Chien-Chang Chen
Leonardo Auslender
+
PDF
Chat
Faster least squares approximation
2010
Petros Drineas
Michael W. Mahoney
S. Muthukrishnan
Tamás Sarlós
+
PDF
Chat
Feature hashing for large scale multitask learning
2009
Kilian Q. Weinberger
Anirban Dasgupta
John Langford
Alex Smola
Josh Attenberg
+
Directional Variance Adjustment: improving covariance estimates for high-dimensional portfolio optimization
2011
Daniel Bartz
Kerr Hatrick
Christian W. Hesse
Klaus‐Robert Müller
Steven Lemm
+
PDF
Chat
Simultaneous analysis of Lasso and Dantzig selector
2009
Peter J. Bickel
Ya’acov Ritov
Alexandre B. Tsybakov
+
PDF
Chat
CUR matrix decompositions for improved data analysis
2009
Michael W. Mahoney
Petros Drineas
+
One-bit compressed sensing by linear programming
2011
Yaniv Plan
Roman Vershynin
+
Convex Optimization
2004
Stephen Boyd
Lieven Vandenberghe
+
A Reliable Effective Terascale Linear Learning System
2011
Alekh Agarwal
Olivier Chapelle
Miroslav Dudı́k
John Langford
+
PDF
Chat
IMPROVED ANALYSIS OF THE SUBSAMPLED RANDOMIZED HADAMARD TRANSFORM
2011
Joel A. Tropp