Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Open type quasi-Monte Carlo integration based on Halton sequences in weighted Sobolev spaces
Peter Hellekalek
,
Peter Kritzer
,
Friedrich Pillichshammer
Type:
Preprint
Publication Date:
2014-11-14
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Open type quasi-Monte Carlo integration based on Halton sequences in weighted Sobolev spaces
2014
Peter Hellekalek
Peter Kritzer
Friedrich Pillichshammer
+
PDF
Chat
Open type quasi-Monte Carlo integration based on Halton sequences in weighted Sobolev spaces
2015
Peter Hellekalek
Peter Kritzer
Friedrich Pillichshammer
+
Component-by-component construction of shifted Halton sequences
2015
Peter Kritzer
Friedrich Pillichshammer
+
The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll"><mml:mi>b</mml:mi></mml:math>-adic tent transformation for quasi-Monte Carlo integration using digital nets
2015
Takashi Goda
Kosuke Suzuki
Takehito Yoshiki
+
Quasi-Monte Carlo integration using digital nets with antithetics
2016
Takashi Goda
+
PDF
Chat
On the step-by-step construction of quasi--Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces
2002
Ian H. Sloan
Frances Y. Kuo
Stephen Joe
+
ON THE COMPONENT BY COMPONENT CONSTRUCTION OF POLYNOMIAL LATTICE POINT SETS FOR NUMERICAL INTEGRATION IN WEIGHTED SOBOLEV SPACES
2011
Peter Kritzer
Friedrich Pillichshammer
+
PDF
Chat
Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness
2016
Takashi Goda
Kosuke Suzuki
Takehito Yoshiki
+
PDF
Chat
Construction of scrambled polynomial lattice rules over $\mathbb{F}_{2}$ with small mean square weighted $\mathcal{L}_{2}$ discrepancy
2013
Takashi Goda
+
Fast CBC construction of randomly shifted lattice rules achieving<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si120.gif" display="inline" overflow="scroll"><mml:mi mathvariant="script">O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>δ</mml:mi></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math>convergence for unbounded integrands over<mml:math xmlns:mml="…
2014
James Nichols
Frances Y. Kuo
+
Quasi-Monte Carlo methods for high dimensional integration - the standard (weighted Hilbert space) setting and beyond
2012
Frances Y. Kuo
Christoph Schwab
Ian H. Sloan
+
PDF
Chat
QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND
2011
Frances Y. Kuo
Ch. Schwab
Ian H. Sloan
+
PDF
Chat
Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond
2012
F. Y. Kuo
Ch. Schwab
I. H. Sloan
+
PDF
Chat
Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order
2014
Takashi Goda
Josef Dick
+
PDF
Chat
An improved Halton sequence for implementation in quasi-Monte Carlo methods
2024
Nathan Kirk
Christiane Lemieux
+
Digital Nets and Sequences
2010
Josef Dick
Friedrich Pillichshammer
+
Generating and Testing the Modified Halton Sequences
2003
Emanouil Atanassov
Mariya K. Durchova
+
High-dimensional integration: The quasi-Monte Carlo way
2013
Josef Dick
Frances Y. Kuo
Ian H. Sloan
+
Optimal Summation and Integration by Deterministic, Randomized, and Quantum Algorithms
2001
S. Heinrich
E. Novak
+
PDF
Chat
The Bb-adic Symmetrization of Digital Nets for Quasi-Monte Carlo Integration
2017
Takashi Goda
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (23)
Action
Title
Year
Authors
+
PDF
Chat
On irregularities of distribution, III
1979
K. Roth
+
None
2000
Fred J. Hickernell
H. Woźniakowski
+
PDF
Chat
The $p$-adic diaphony of the Halton sequence
2013
Friedrich Pillichshammer
+
Lattice Methods for Multiple Integration
1994
Ian H. Sloan
Stephen Joe
+
High-dimensional integration: The quasi-Monte Carlo way
2013
Josef Dick
Frances Y. Kuo
Ian H. Sloan
+
When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals?
1998
Ian H. Sloan
Henryk Woźniakowski
+
Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces
2003
Frances Y. Kuo
+
On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals
1960
John H. Halton
+
PDF
Chat
A notion of diaphony based on p-adic arithmetic
2010
Peter Hellekalek
+
Random Number Generation and Quasi-Monte Carlo Methods.
1993
Bruce Jay Collings
Harald Niederreiter