Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Multi-task Deep Reinforcement Learning with PopArt
Matteo Hessel
,
Hubert Soyer
,
Lasse Espeholt
,
Wojciech Marian Czarnecki
,
Simon Schmitt
,
Hado van Hasselt
Type:
Preprint
Publication Date:
2018-09-12
Citations:
27
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Multi-task Deep Reinforcement Learning with PopArt
2018
Matteo Hessel
Hubert Soyer
Lasse Espeholt
Wojciech Marian Czarnecki
Simon Schmitt
Hado van Hasselt
+
PDF
Chat
Multi-Task Deep Reinforcement Learning with PopArt
2019
Matteo Hessel
Hubert Soyer
Lasse Espeholt
Wojciech Marian Czarnecki
Simon Schmitt
Hado van Hasselt
+
Multi-task learning with deep model based reinforcement learning
2016
Asier Mujika
+
Meta Arcade: A Configurable Environment Suite for Meta-Learning
2021
Edward W. Staley
Chace Ashcraft
Benjamin Stoler
J. Markowitz
Gautam K. Vallabha
Christopher R. Ratto
Kapil D. Katyal
+
PDF
Chat
Meta Arcade: A Configurable Environment Suite for Meta-Learning
2021
Edward W. Staley
Chace Ashcraft
Benjamin Stoler
J. Markowitz
Gautam K. Vallabha
Christopher R. Ratto
Kapil D. Katyal
+
Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning
2015
Emilio Parisotto
Jimmy Ba
Ruslan Salakhutdinov
+
Meta Arcade: A Configurable Environment Suite for Meta-Learning.
2021
Edward W. Staley
Chace Ashcraft
Benjamin Stoler
J. Markowitz
Gautam K. Vallabha
Christopher R. Ratto
Kapil D. Katyal
+
Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks
2020
Georgios Papoudakis
Filippos Christianos
Lukas SchÀfer
Stefano V. Albrecht
+
Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks
2020
Georgios Papoudakis
Filippos Christianos
Lukas SchÀfer
Stefano V. Albrecht
+
Curriculum-based Asymmetric Multi-task Reinforcement Learning
2022
Hanchi Huang
Deheng Ye
Li Shen
Wei Liu
+
Multi-Task Multi-Agent Shared Layers are Universal Cognition of Multi-Agent Coordination
2023
Jiawei Wang
Jian Zhao
Zhengtao Cao
Ruili Feng
Rongjun Qin
Yang Yu
+
Boosting Exploration in Multi-Task Reinforcement Learning using Adversarial Networks
2022
Ramnath Kumar
Tristan Deleu
Yoshua Bengio
+
PDF
Chat
Modular Networks Prevent Catastrophic Interference in Model-Based Multi-Task Reinforcement Learning
2021
Robin Schiewer
Laurenz Wiskott
+
Modular Networks Prevent Catastrophic Interference in Model-Based Multi-Task Reinforcement Learning
2021
Robin Schiewer
Laurenz Wiskott
+
Is multiagent deep reinforcement learning the answer or the question? A brief survey
2018
Pablo HernĂĄndez-Leal
Bilal Kartal
Matthew E. Taylor
+
Opponent Modeling in Deep Reinforcement Learning
2016
He He
Jordan BoydâGraber
Kevin Kwok
Hal Daumé
+
PDF
Chat
Deep Reinforcement Learning
2023
Shengbo Eben Li
+
UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers
2021
Siyi Hu
Fengda Zhu
Xiaojun Chang
Xiaodan Liang
+
PDF
Chat
Curriculum-Based Asymmetric Multi-Task Reinforcement Learning
2022
Hanchi Huang
Deheng Ye
Li Shen
Wei Liu
+
Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft
2021
Ingmar Kanitscheider
Joost Huizinga
David Farhi
William H. Guss
Brandon Houghton
Raul Sampedro
P. A. Zhokhov
Bowen Baker
Adrien Ecoffet
Jie Tang
Works That Cite This (24)
Action
Title
Year
Authors
+
Self-Attentional Credit Assignment for Transfer in Reinforcement Learning
2020
Johan Ferret
Raphaël Marinier
Matthieu Geist
Olivier Pietquin
+
PDF
Chat
CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning
2019
CĂ©dric Colas
Pierre F. Fournier
Olivier Sigaud
Mohamed Chétouani
PierreâYves Oudeyer
+
Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions
2019
Rui Wang
Joel Lehman
Jeff Clune
Kenneth O. Stanley
+
Multi-Agent Reinforcement Learning for Unmanned Aerial Vehicle Coordination by Multi-Critic Policy Gradient Optimization
2020
Yoav Alon
Huiyu Zhou
+
Zero-Shot Terrain Generalization for Visual Locomotion Policies
2020
Alejandro Escontrela
George Yu
Peng Xu
Atıl IĆçen
Jie Tan
+
Simultaneously Learning Vision and Feature-Based Control Policies for Real-World Ball-In-A-Cup
2019
Devin Schwab
Jost Tobias Springenberg
Murilo Fernandes Martins
Michael Neunert
Thomas Lampe
Abbas Abdolmaleki
Tim Hertweck
Roland Hafner
Francesco Nori
Martin Riedmiller
+
Adapting Auxiliary Losses Using Gradient Similarity
2018
Yunshu Du
Wojciech Marian Czarnecki
Siddhant M. Jayakumar
Razvan Pascanu
Balaji Lakshminarayanan
+
V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete and Continuous Control
2019
Hao Song
Abbas Abdolmaleki
Jost Tobias Springenberg
Aidan Clark
Hubert Soyer
Jack W. Rae
Seb Noury
Arun Ahuja
Siqi Liu
Dhruva Tirumala
+
Multi-task Reinforcement Learning with a Planning Quasi-Metric
2020
Vincent Micheli
Karthigan Sinnathamby
François Fleuret
+
PDF
Chat
Evaluating Generalisation in General Video Game Playing
2020
Martin Balla
Simon M. Lucas
Diego Pérez-Liébana
Works Cited by This (30)
Action
Title
Year
Authors
+
Multilinear Multitask Learning
2013
Bernardino RomeraâParedes
Hane Aung
Nadia BianchiâBerthouze
Massimiliano Pontil
+
Massively Parallel Methods for Deep Reinforcement Learning
2015
Arun Sukumaran Nair
P. Srinivasan
Sam Blackwell
Cagdas Alcicek
Rory Fearon
Alessandro De Maria
Vedavyas Panneershelvam
Mustafa Suleyman
Charles Beattie
Stig Petersen
+
PDF
Chat
A Markovian Decision Process
1957
Richard Bellman
+
Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning
2015
Emilio Parisotto
Jimmy Ba
Ruslan Salakhutdinov
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+
Deep Exploration via Bootstrapped DQN
2016
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
+
Cross-stitch Networks for Multi-task Learning
2016
Ishan Misra
Abhinav Shrivastava
Abhinav Gupta
Martial Hebert
+
Benchmarking Deep Reinforcement Learning for Continuous Control
2016
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
+
Learning values across many orders of magnitude
2016
Hado van Hasselt
Arthur Guez
Matteo Hessel
Volodymyr Mnih
David Silver
+
PDF
Chat
Playing FPS Games with Deep Reinforcement Learning
2017
Guillaume Lample
Devendra Singh Chaplot