Multi-task Deep Reinforcement Learning with PopArt

Type: Preprint

Publication Date: 2018-09-12

Citations: 27

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Multi-task Deep Reinforcement Learning with PopArt 2018 Matteo Hessel
Hubert Soyer
Lasse Espeholt
Wojciech Marian Czarnecki
Simon Schmitt
Hado van Hasselt
+ PDF Chat Multi-Task Deep Reinforcement Learning with PopArt 2019 Matteo Hessel
Hubert Soyer
Lasse Espeholt
Wojciech Marian Czarnecki
Simon Schmitt
Hado van Hasselt
+ Multi-task learning with deep model based reinforcement learning 2016 Asier Mujika
+ Meta Arcade: A Configurable Environment Suite for Meta-Learning 2021 Edward W. Staley
Chace Ashcraft
Benjamin Stoler
J. Markowitz
Gautam K. Vallabha
Christopher R. Ratto
Kapil D. Katyal
+ PDF Chat Meta Arcade: A Configurable Environment Suite for Meta-Learning 2021 Edward W. Staley
Chace Ashcraft
Benjamin Stoler
J. Markowitz
Gautam K. Vallabha
Christopher R. Ratto
Kapil D. Katyal
+ Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning 2015 Emilio Parisotto
Jimmy Ba
Ruslan Salakhutdinov
+ Meta Arcade: A Configurable Environment Suite for Meta-Learning. 2021 Edward W. Staley
Chace Ashcraft
Benjamin Stoler
J. Markowitz
Gautam K. Vallabha
Christopher R. Ratto
Kapil D. Katyal
+ Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks 2020 Georgios Papoudakis
Filippos Christianos
Lukas SchÀfer
Stefano V. Albrecht
+ Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks 2020 Georgios Papoudakis
Filippos Christianos
Lukas SchÀfer
Stefano V. Albrecht
+ Curriculum-based Asymmetric Multi-task Reinforcement Learning 2022 Hanchi Huang
Deheng Ye
Li Shen
Wei Liu
+ Multi-Task Multi-Agent Shared Layers are Universal Cognition of Multi-Agent Coordination 2023 Jiawei Wang
Jian Zhao
Zhengtao Cao
Ruili Feng
Rongjun Qin
Yang Yu
+ Boosting Exploration in Multi-Task Reinforcement Learning using Adversarial Networks 2022 Ramnath Kumar
Tristan Deleu
Yoshua Bengio
+ PDF Chat Modular Networks Prevent Catastrophic Interference in Model-Based Multi-Task Reinforcement Learning 2021 Robin Schiewer
Laurenz Wiskott
+ Modular Networks Prevent Catastrophic Interference in Model-Based Multi-Task Reinforcement Learning 2021 Robin Schiewer
Laurenz Wiskott
+ Is multiagent deep reinforcement learning the answer or the question? A brief survey 2018 Pablo HernĂĄndez-Leal
Bilal Kartal
Matthew E. Taylor
+ Opponent Modeling in Deep Reinforcement Learning 2016 He He
Jordan Boyd‐Graber
Kevin Kwok
Hal Daumé
+ PDF Chat Deep Reinforcement Learning 2023 Shengbo Eben Li
+ UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers 2021 Siyi Hu
Fengda Zhu
Xiaojun Chang
Xiaodan Liang
+ PDF Chat Curriculum-Based Asymmetric Multi-Task Reinforcement Learning 2022 Hanchi Huang
Deheng Ye
Li Shen
Wei Liu
+ Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft 2021 Ingmar Kanitscheider
Joost Huizinga
David Farhi
William H. Guss
Brandon Houghton
Raul Sampedro
P. A. Zhokhov
Bowen Baker
Adrien Ecoffet
Jie Tang

Works That Cite This (24)

Action Title Year Authors
+ Self-Attentional Credit Assignment for Transfer in Reinforcement Learning 2020 Johan Ferret
Raphaël Marinier
Matthieu Geist
Olivier Pietquin
+ PDF Chat CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning 2019 CĂ©dric Colas
Pierre F. Fournier
Olivier Sigaud
Mohamed Chétouani
Pierre‐Yves Oudeyer
+ Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions 2019 Rui Wang
Joel Lehman
Jeff Clune
Kenneth O. Stanley
+ Multi-Agent Reinforcement Learning for Unmanned Aerial Vehicle Coordination by Multi-Critic Policy Gradient Optimization 2020 Yoav Alon
Huiyu Zhou
+ Zero-Shot Terrain Generalization for Visual Locomotion Policies 2020 Alejandro Escontrela
George Yu
Peng Xu
Atıl IƟçen
Jie Tan
+ Simultaneously Learning Vision and Feature-Based Control Policies for Real-World Ball-In-A-Cup 2019 Devin Schwab
Jost Tobias Springenberg
Murilo Fernandes Martins
Michael Neunert
Thomas Lampe
Abbas Abdolmaleki
Tim Hertweck
Roland Hafner
Francesco Nori
Martin Riedmiller
+ Adapting Auxiliary Losses Using Gradient Similarity 2018 Yunshu Du
Wojciech Marian Czarnecki
Siddhant M. Jayakumar
Razvan Pascanu
Balaji Lakshminarayanan
+ V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete and Continuous Control 2019 Hao Song
Abbas Abdolmaleki
Jost Tobias Springenberg
Aidan Clark
Hubert Soyer
Jack W. Rae
Seb Noury
Arun Ahuja
Siqi Liu
Dhruva Tirumala
+ Multi-task Reinforcement Learning with a Planning Quasi-Metric 2020 Vincent Micheli
Karthigan Sinnathamby
François Fleuret
+ PDF Chat Evaluating Generalisation in General Video Game Playing 2020 Martin Balla
Simon M. Lucas
Diego Pérez-Liébana