Submean variance bound for effective resistance of random electric networks

Type: Preprint

Publication Date: 2006-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.math/0610393

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Submean Variance Bound for Effective Resistance of Random Electric Networks 2008 Itaı Benjamini
Raphaël Rossignol
+ Noise-stability and central limit theorems for effective resistance of random electric networks 2016 Raphaël Rossignol
+ PDF Chat Effective resistance of random trees 2009 Louigi Addario‐Berry
Nicolas Broutin
Gábor Lugosi
+ Effective resistance on random electrical networks 2007 Michel Benaı̈m
Itaı Benjamini
Raphaël Rossignol
+ Random walks, effective resistance and neighbourhood statistics in binomial random graphs 2017 John Sylvester
+ A lower bound on the variance of conductance in random resistor networks 1997 Jan Wehr
+ Electrical Networks with Random Resistances 1985 Geoffrey Grimmett
+ PDF Chat Polynomial lower bound on the effective resistance for the one-dimensional critical long-range percolation 2024 Jian Ding
Zherui Fan
Lu‐Jing Huang
+ PDF Chat Resistance growth of branching random networks 2018 Dayue Chen
Yueyun Hu
Shen Lin
+ Logarithmic correction to resistance 2021 Antal A. Járai
Dante Mata López
+ Logarithmic correction to resistance 2020 Antal A. Járai
Dante Mata López
+ PDF Chat Random Walks and Electric Networks 2019 Asaf Nachmias
+ PDF Chat Potential distribution on random electrical networks 2011 Da-qian Qian
Xiao‐Dong Zhang
+ Random Electrical Networks on Complete Graphs II: Proofs 2001 Geoffrey Grimmett
Harry Kesten
+ On the variance of the nodal volume of arithmetic random waves 2020 Giacomo Cherubini
Niko Laaksonen
+ A quantitative central limit theorem for the effective conductance on the discrete torus 2014 Antoine Gloria
James Nolen
+ A quantitative central limit theorem for the effective conductance on the discrete torus 2014 Antoine Gloria
James Nolen
+ Lace Expansion and Mean-Field Behavior for the Random Connection Model 2019 Markus Heydenreich
Remco van der Hofstad
Günter Last
Kilian Matzke
+ PDF Chat Random walk hitting times and effective resistance in sparsely connected Erdős‐Rényi random graphs 2020 John Sylvester
+ Lace Expansion and Mean-Field Behavior for the Random Connection Model 2019 Markus Heydenreich
Remco van der Hofstad
Kilian Matzke