Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Invertibility of symmetric random matrices
Roman Vershynin
Type:
Preprint
Publication Date:
2011-02-01
Citations:
16
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Invertibility of symmetric random matrices
2011
Roman Vershynin
+
Invertibility of Sparse non-Hermitian matrices
2015
Anirban Basak
Mark Rudelson
+
PDF
Chat
Invertibility of symmetric random matrices
2012
Roman Vershynin
+
PDF
Chat
Invertibility of sparse non-Hermitian matrices
2017
Anirban Basak
Mark Rudelson
+
Quantitative invertibility of random matrices: a combinatorial perspective
2019
Vishesh Jain
+
Smoothed analysis of symmetric random matrices with continuous distributions
2012
Brendan Farrell
Roman Vershynin
+
Smoothed analysis of symmetric random matrices with continuous distributions
2012
Brendan Farrell
Roman Vershynin
+
Invertibility of Sparse non-Hermitian matrices
2015
Anirban Basak
Mark Rudelson
+
PDF
Chat
Smoothed analysis of symmetric random matrices with continuous distributions
2015
Brendan Farrell
Roman Vershynin
+
Random Matrices: The circular Law
2007
Terence Tao
Van Vu
+
On the singularity probability of discrete random matrices
2009
Jean Bourgain
Van Vu
Philip Matchett Wood
+
Invertibility of random matrices: norm of the inverse
2005
Mark Rudelson
+
Sharp invertibility of random Bernoulli matrices
2020
Vishesh Jain
Ashwin Sah
Mehtaab Sawhney
+
Investigate Invertibility of Sparse Symmetric Matrix
2017
Wei Feng
+
The Littlewood-Offord Problem and invertibility of random matrices
2007
Mark Rudelson
Roman Vershynin
+
The Littlewood-Offord Problem and invertibility of random matrices
2007
Mark Rudelson
Roman Vershynin
+
PDF
Chat
RANDOM MATRICES: THE CIRCULAR LAW
2008
Terence Tao
Van Vu
+
PDF
Chat
Quantitative invertibility of random matrices: a combinatorial perspective
2021
Vishesh Jain
+
PDF
Chat
Lower bounds for the smallest singular value of structured random matrices
2018
Nicholas A. Cook
+
PDF
Chat
The Littlewood–Offord problem and invertibility of random matrices
2008
Mark Rudelson
Roman Vershynin
Works That Cite This (15)
Action
Title
Year
Authors
+
Random matrices: Universal properties of eigenvectors
2011
Terence Tao
Van Vu
+
The distribution of sandpile groups of random graphs
2014
Melanie Matchett Wood
+
PDF
Chat
Circular law for random discrete matrices of given row sum
2013
Hoi H. Nguyen
Van H. Vu
+
A central limit theorem for the determinant of a Wigner matrix
2012
Terence Tao
Van Vu
+
The Elliptic Law
2012
Hoi H. Nguyen
Sean O’Rourke
+
PDF
Chat
On the Singularity of Random Combinatorial Matrices
2013
Hoi H. Nguyen
+
Invertibility of random matrices: unitary and orthogonal perturbations
2012
Mark Rudelson
Roman Vershynin
+
Random matrices: The universality phenomenon for Wigner ensembles
2014
Terence Tao
Van Vu
+
Random doubly stochastic matrices: The circular law
2014
Hoi H. Nguyen
+
Universality of some models of random matrices and random processes
2012
Alexey Naumov
Works Cited by This (18)
Action
Title
Year
Authors
+
PDF
Chat
Asymptotic expansions for bivariate von Mises functionals
1979
F. G�tze
+
Random matrices: Localization of the eigenvalues and the necessity of four moments
2010
Terence Tao
Van Vu
+
PDF
Chat
Inverse Littlewood–Offord theorems and the condition number of random discrete matrices
2009
Terence Tao
Van H. Vu
+
On the singularity probability of discrete random matrices
2009
Jean Bourgain
Van H. Vu
Philip Matchett Wood
+
PDF
Chat
Random matrices: Universality of local eigenvalue statistics
2011
Terence Tao
Van Vu
+
PDF
Chat
Random Matrices: the Distribution of the Smallest Singular Values
2010
Terence Tao
Van Vu
+
PDF
Chat
From the Littlewood-Offord problem to the Circular Law: Universality of the spectral distribution of random matrices
2009
Terence Tao
Van Vu
+
Some estimates of norms of random matrices
2004
Rafał Latała
+
PDF
Chat
Random symmetric matrices are almost surely nonsingular
2006
Kevin Costello
Terence Tao
Van Vu
+
PDF
Chat
On the probability that a random ±1-matrix is singular
1995
Jeff Kahn
János Komlós
Endre Szemerédi